Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Chem Biol ; 19(3): 275-283, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36175661

RESUMO

Prevention of infection and propagation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a high priority in the Coronavirus Disease 2019 (COVID-19) pandemic. Here we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin-converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 spike protein, thereby inhibiting viral entry, infectivity and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and, thus, the spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model and, thus, provide a novel avenue to pursue therapy.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica , Peptidil Dipeptidase A/metabolismo
2.
J Neurosci ; 41(10): 2264-2273, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33483428

RESUMO

Synaptic and neuronal loss are major neuropathological characteristics of Parkinson's disease. Misfolded protein aggregates in the form of Lewy bodies, comprised mainly of α-synuclein (αSyn), are associated with disease progression, and have also been linked to other neurodegenerative diseases, including Lewy body dementia, Alzheimer's disease, and frontotemporal dementia. However, the effects of αSyn and its mechanism of synaptic damage remain incompletely understood. Here, we show that αSyn oligomers induce Ca2+-dependent release of glutamate from astrocytes obtained from male and female mice, and that mice overexpressing αSyn manifest increased tonic release of glutamate in vivo In turn, this extracellular glutamate activates glutamate receptors, including extrasynaptic NMDARs (eNMDARs), on neurons both in culture and in hippocampal slices of αSyn-overexpressing mice. Additionally, in patch-clamp recording from outside-out patches, we found that oligomerized αSyn can directly activate eNMDARs. In organotypic slices, oligomeric αSyn induces eNMDAR-mediated synaptic loss, which can be reversed by the drug NitroSynapsin. When we expose human induced pluripotent stem cell-derived cerebrocortical neurons to αSyn, we find similar effects. Importantly, the improved NMDAR antagonist NitroSynapsin, which selectively inhibits extrasynaptic over physiological synaptic NMDAR activity, protects synapses from oligomeric αSyn-induced damage in our model systems, thus meriting further study for its therapeutic potential.SIGNIFICANCE STATEMENT Loss of synaptic function and ensuing neuronal loss are associated with disease progression in Parkinson's disease (PD), Lewy body dementia (LBD), and other neurodegenerative diseases. However, the mechanism of synaptic damage remains incompletely understood. α-Synuclein (αSyn) misfolds in PD/LBD, forming Lewy bodies and contributing to disease pathogenesis. Here, we found that misfolded/oligomeric αSyn releases excessive astrocytic glutamate, in turn activating neuronal extrasynaptic NMDA receptors (eNMDARs), thereby contributing to synaptic damage. Additionally, αSyn oligomers directly activate eNMDARs, further contributing to damage. While the FDA-approved drug memantine has been reported to offer some benefit in PD/LBD (Hershey and Coleman-Jackson, 2019), we find that the improved eNMDAR antagonist NitroSynapsin ameliorates αSyn-induced synaptic spine loss, providing potential disease-modifying intervention in PD/LBD.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , alfa-Sinucleína/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Células Cultivadas , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sinapses/metabolismo , Sinapses/patologia , alfa-Sinucleína/farmacologia
3.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360984

RESUMO

Dopamine D1 receptor (D1R) function is regulated by membrane/lipid raft-resident protein caveolin-1 (Cav1). We examined whether altered expression of Cav1 in the dorsal striatum would affect self-administration of methamphetamine, an indirect agonist at the D1Rs. A lentiviral construct expressing Cav1 (LV-Cav1) or containing a short hairpin RNA against Cav1 (LV-shCav1) was used to overexpress or knock down Cav1 expression respectively, in the dorsal striatum. Under a fixed-ratio schedule, LV-Cav1 enhanced and LV-shCav1 reduced responding for methamphetamine in an extended access paradigm compared to LV-GFP controls. LV-Cav1 and LV-shCav1 also produced an upward and downward shift in a dose-response paradigm, generating a drug vulnerable/resistant phenotype. LV-Cav1 and LV-shCav1 did not alter responding for sucrose. Under a progressive-ratio schedule, LV-shCav1 generally reduced positive-reinforcing effects of methamphetamine and sucrose as seen by reduced breakpoints. Western blotting confirmed enhanced Cav1 expression in LV-Cav1 rats and reduced Cav1 expression in LV-shCav1 rats. Electrophysiological findings in LV-GFP rats demonstrated an absence of high-frequency stimulation (HFS)-induced long-term potentiation (LTP) in the dorsal striatum after extended access methamphetamine self-administration, indicating methamphetamine-induced occlusion of plasticity. LV-Cav1 prevented methamphetamine-induced plasticity via increasing phosphorylation of calcium calmodulin kinase II, suggesting a mechanism for addiction vulnerability. LV-shCav1 produced a marked deficit in the ability of HFS to produce LTP and, therefore, extended access methamphetamine was unable to alter striatal plasticity, indicating a mechanism for resistance to addiction-like behavior. Our results demonstrate that Cav1 expression and knockdown driven striatal plasticity assist with modulating addiction to drug and nondrug rewards, and inspire new strategies to reduce psychostimulant addiction.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Caveolina 1/metabolismo , Corpo Estriado/metabolismo , Potenciação de Longa Duração , Transtornos Relacionados ao Uso de Anfetaminas/genética , Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Caveolina 1/genética , Corpo Estriado/efeitos dos fármacos , Masculino , Metanfetamina/toxicidade , Ratos , Ratos Long-Evans , Recompensa
5.
Proc Natl Acad Sci U S A ; 114(20): E4048-E4056, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28461502

RESUMO

Gaining mechanistic insight into interaction between causative factors of complex multifactorial diseases involving photoreceptor damage might aid in devising effective therapies. Oxidative stress is one of the potential unifying mechanisms for interplay between genetic and environmental factors that contribute to photoreceptor pathology. Interestingly, the transcription factor myocyte enhancer factor 2d (MEF2D) is known to be important in photoreceptor survival, as knockout of this transcription factor results in loss of photoreceptors in mice. Here, using a mild light-induced retinal degeneration model, we show that the diminished MEF2D transcriptional activity in Mef2d+/- retina is further reduced under photostimulation-induced oxidative stress. Reactive oxygen species cause an aberrant redox modification on MEF2D, consequently inhibiting transcription of its downstream target, nuclear factor (erythroid-derived 2)-like 2 (NRF2). NRF2 is a master regulator of phase II antiinflammatory and antioxidant gene expression. In the Mef2d heterozygous mouse retina, NRF2 is not up-regulated to a normal degree in the face of light-induced oxidative stress, contributing to accelerated photoreceptor cell death. Furthermore, to combat this injury, we found that activation of the endogenous NRF2 pathway using proelectrophilic drugs rescues photoreceptors from photo-induced oxidative stress and may therefore represent a viable treatment for oxidative stress-induced photoreceptor degeneration, which is thought to contribute to some forms of retinitis pigmentosa and age-related macular degeneration.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/etiologia , Abietanos , Animais , Modelos Animais de Doenças , Haploinsuficiência , Luz/efeitos adversos , Fatores de Transcrição MEF2/genética , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Mol Sci ; 21(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899459

RESUMO

Extended-access methamphetamine self-administration results in unregulated intake of the drug; however, the role of dorsal striatal dopamine D1-like receptors (D1Rs) in the reinforcing properties of methamphetamine under extended-access conditions is unclear. Acute (ex vivo) and chronic (in vivo) methamphetamine exposure induces neuroplastic changes in the dorsal striatum, a critical region implicated in instrumental learning. For example, methamphetamine exposure alters high-frequency stimulation (HFS)-induced long-term depression in the dorsal striatum; however, the effect of methamphetamine on HFS-induced long-term potentiation (LTP) in the dorsal striatum is unknown. In the current study, dorsal striatal infusion of SCH23390, a D1R antagonist, prior to extended-access methamphetamine self-administration reduced methamphetamine addiction-like behavior. Reduced behavior was associated with reduced expression of PSD-95 in the dorsal striatum. Electrophysiological findings demonstrate that superfusion of methamphetamine reduced basal synaptic transmission and HFS-induced LTP in dorsal striatal slices, and SCH23390 prevented this effect. These results suggest that alterations in synaptic transmission and synaptic plasticity induced by acute methamphetamine via D1Rs could assist with methamphetamine-induced modification of corticostriatal circuits underlying the learning of goal-directed instrumental actions and formation of habits, mediating escalation of methamphetamine self-administration and methamphetamine addiction-like behavior.


Assuntos
Benzazepinas/farmacologia , Metanfetamina/efeitos adversos , Receptores de Dopamina D1/metabolismo , Animais , Benzazepinas/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Metanfetamina/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Long-Evans , Reforço Psicológico , Autoadministração/métodos , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos
7.
Neurobiol Dis ; 127: 390-397, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30928642

RESUMO

Tuberous sclerosis (TSC) is an autosomal dominant disorder caused by heterozygous mutations in the TSC1 or TSC2 gene. TSC is often associated with neurological, cognitive, and behavioral deficits. TSC patients also express co-morbidity with anxiety and mood disorders. The mechanism of pathogenesis in TSC is not entirely clear, but TSC-related neurological symptoms are accompanied by excessive glutamatergic activity and altered synaptic spine structures. To address whether extrasynaptic (e)NMDA-type glutamate receptor (NMDAR) antagonists, as opposed to antagonists that block physiological phasic synaptic activity, can ameliorate the synaptic and behavioral features of this disease, we utilized the Tsc2+/- mouse model of TSC to measure biochemical, electrophysiological, histological, and behavioral parameters in the mice. We found that antagonists that preferentially block tonic activity as found at eNMDARs, particularly the newer drug NitroSynapsin, provide biological and statistically significant improvement in Tsc2+/- phenotypes. Accompanying this improvement was correction of activity in the p38 MAPK-TSC-Rheb-mTORC1-S6K1 pathway. Deficits in hippocampal long-term potentiation (LTP), histological loss of synapses, and behavioral fear conditioning in Tsc2+/- mice were all improved after treatment with NitroSynapsin. Taken together, these results suggest that amelioration of excessive excitation, by limiting aberrant eNMDAR activity, may represent a novel treatment approach for TSC.


Assuntos
Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Hipocampo/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Esclerose Tuberosa/tratamento farmacológico , Animais , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(32): E3343-52, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071179

RESUMO

Glial cells are an integral part of functional communication in the brain. Here we show that astrocytes contribute to the fast dynamics of neural circuits that underlie normal cognitive behaviors. In particular, we found that the selective expression of tetanus neurotoxin (TeNT) in astrocytes significantly reduced the duration of carbachol-induced gamma oscillations in hippocampal slices. These data prompted us to develop a novel transgenic mouse model, specifically with inducible tetanus toxin expression in astrocytes. In this in vivo model, we found evidence of a marked decrease in electroencephalographic (EEG) power in the gamma frequency range in awake-behaving mice, whereas neuronal synaptic activity remained intact. The reduction in cortical gamma oscillations was accompanied by impaired behavioral performance in the novel object recognition test, whereas other forms of memory, including working memory and fear conditioning, remained unchanged. These results support a key role for gamma oscillations in recognition memory. Both EEG alterations and behavioral deficits in novel object recognition were reversed by suppression of tetanus toxin expression. These data reveal an unexpected role for astrocytes as essential contributors to information processing and cognitive behavior.


Assuntos
Astrócitos/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/fisiologia , Sinalização do Cálcio , Carbacol/farmacologia , Eletroencefalografia , Expressão Gênica , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transmissão Sináptica , Toxina Tetânica/genética , Toxina Tetânica/metabolismo , Técnicas de Cultura de Tecidos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
9.
Proc Natl Acad Sci U S A ; 110(27): E2518-27, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23776240

RESUMO

Synaptic loss is the cardinal feature linking neuropathology to cognitive decline in Alzheimer's disease (AD). However, the mechanism of synaptic damage remains incompletely understood. Here, using FRET-based glutamate sensor imaging, we show that amyloid-ß peptide (Aß) engages α7 nicotinic acetylcholine receptors to induce release of astrocytic glutamate, which in turn activates extrasynaptic NMDA receptors (eNMDARs) on neurons. In hippocampal autapses, this eNMDAR activity is followed by reduction in evoked and miniature excitatory postsynaptic currents (mEPSCs). Decreased mEPSC frequency may reflect early synaptic injury because of concurrent eNMDAR-mediated NO production, tau phosphorylation, and caspase-3 activation, each of which is implicated in spine loss. In hippocampal slices, oligomeric Aß induces eNMDAR-mediated synaptic depression. In AD-transgenic mice compared with wild type, whole-cell recordings revealed excessive tonic eNMDAR activity accompanied by eNMDAR-sensitive loss of mEPSCs. Importantly, the improved NMDAR antagonist NitroMemantine, which selectively inhibits extrasynaptic over physiological synaptic NMDAR activity, protects synapses from Aß-induced damage both in vitro and in vivo.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Inibição Neural/fisiologia , Fragmentos de Peptídeos/toxicidade , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Astrócitos/patologia , Técnicas de Cocultura , Feminino , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Ratos , Receptores Nicotínicos/metabolismo , Sinapses/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
10.
J Neurosci ; 34(14): 5023-8, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24695719

RESUMO

Oligomerized amyloid-ß (Aß) peptide is thought to contribute to synaptic damage, resulting in dysfunctional neuronal networks in patients with Alzheimer's disease. It has been previously suggested that Aß may be detrimental to neuronal health, at least in part, by triggering oxidative/nitrosative stress. However, the mechanisms underlying this process remain to be elucidated. Here, using rat primary cerebrocortical cultures, we demonstrate that Aß1-42 oligomers trigger a dramatic increase in intracellular nitric oxide (NO) concentration via a process mediated by activation of NMDA-type glutamate receptors (NMDARs). Considering that synaptic NMDARs and extrasynaptic NMDARs (eNMDARs) can have opposite effects on neuronal viability, we explored their respective roles in Aß-induced increases in NO levels. Surprisingly, after pharmacological isolation of eNMDARs, we discovered that eNMDARs are primarily responsible for the increase in neuronal NO triggered by Aß oligomers. Moreover, we found that the eNMDAR-mediated increase in NO can produce S-nitrosylation of Drp1 (dynamin-related protein 1) and Cdk5 (cyclin-dependent kinase 5), targets known to contribute to Aß-induced synaptic damage. These results suggest that pharmacological intervention specifically aimed at eNMDARs may decrease Aß-induced nitrosative stress and thus ameliorate neurotoxic damage to synapses.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Córtex Cerebelar/citologia , Neurônios/efeitos dos fármacos , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fluoresceínas/metabolismo , Humanos , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
11.
J Neurosci ; 32(45): 15837-42, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136422

RESUMO

After transplantation, individual stem cell-derived neurons can functionally integrate into the host CNS; however, evidence that neurons derived from transplanted human embryonic stem cells (hESCs) can drive endogenous neuronal network activity in CNS tissue is still lacking. Here, using multielectrode array recordings, we report activation of high-frequency oscillations in the ß and γ ranges (10-100 Hz) in the host hippocampal network via targeted optogenetic stimulation of transplanted hESC-derived neurons.


Assuntos
Células-Tronco Embrionárias/transplante , Hipocampo/fisiologia , Células-Tronco Neurais/transplante , Neurônios/transplante , Potenciais de Ação/fisiologia , Animais , Células-Tronco Embrionárias/citologia , Feminino , Hipocampo/citologia , Humanos , Masculino , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neurônios/citologia , Optogenética , Ratos , Ratos Sprague-Dawley
12.
Exploration (Beijing) ; 3(3): 20220160, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37933376

RESUMO

Contactin-associated protein-like 4 (Cntnap4) is critical for GABAergic transmission in the brain. Impaired Cntnap4 function is implicated in neurological disorders, such as autism; however, the role of Cntnap4 on memory processing is poorly understood. Here, we demonstrate that hippocampal Cntnap4 deficiency in female mice manifests as impaired cognitive function and synaptic plasticity. The underlying mechanisms may involve effects on the pro-inflammatory response resulting in dysfunctional GABAergic transmission and activated tryptophan metabolism. To efficiently and accurately inhibit the pro-inflammatory reaction, we established a biomimetic microglial nanoparticle strategy to deliver FDA-approved PLX3397 (termed MNPs@PLX). We show MNPs@PLX successfully penetrates the blood brain barrier and facilitates microglial-targeted delivery of PLX3397. Furthermore, MNPs@PLX attenuates cognitive decline, dysfunctional synaptic plasticity, and pro-inflammatory response in female heterozygous Cntnap4 knockout mice. Together, our findings show loss of Cntnap4 causes pro-inflammatory cognitive decline that is effectively prevented by supplementation with microglia-specific inhibitors; thus validating the targeting of microglial function as a therapeutic intervention in neurocognitive disorders.

13.
Mol Neurodegener ; 17(1): 58, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056435

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder that manifests sequential Aß and tau brain pathology with age-dependent onset. Variants in the microglial immune receptor TREM2 are associated with enhanced risk of onset in sporadic Alzheimer's disease (AD). While recent studies suggest TREM2 dysfunction can aggravate tau pathology, mechanisms underlying TREM2-dependent modulation of tau pathology remains elusive. METHODS: Here, we characterized differences in progressive tau spreading from the medial entorhinal cortex (MEC) to the hippocampus in wildtype (WT) and Trem2 knockout (KO) mice by injection of AAV-P301L tau into the MEC, and correlated changes in hippocampal tau histopathology with spatial and fear memory. We also compared effects of intraneuronal dispersion between cultured microglia and neurons using a microfluidic dispersion assay, analyzed differences in microglial tau trafficking following uptake, and quantified exosomal tau secretion and pathogenicity from purified WT and Trem2 KO exosomes. RESULTS: Trem2 deletion in mice (Trem2 KO) can enhance tau spreading from the medial entorhinal cortex (MEC) to the hippocampus, which coincides with impaired synaptic function and memory behavior. Trem2 deletion in microglia enhances intraneuronal dispersion of tau in vitro between neuronal layers cultured in a microfluidic chamber, and the presence of exosome inhibitors can significantly reduce tau in exosomes and extracellular media from tau-loaded microglia. Although microglial Trem2 deletion has no effect on tau uptake, Trem2 deletion enhances distribution to endosomal and cellular pre-exosomal compartments following internalization. Trem2 deletion has little effect on exosome size, however, proteomic analysis indicates that Trem2 deletion can modulate changes in the microglial proteomic landscape with tau and LPS/ATP treatment conditions associated with exosome induction. Furthermore, exosomes from Trem2 KO microglia show elevated tau levels, and feature enhanced tau-seeding capacity in a tau FRET reporter line compared to exosomes from WT microglia. CONCLUSION: Together, our results reveal a role for Trem2 in suppressing exosomal tau pathogenicity, and demonstrates that Trem2 deletion can enhance tau trafficking, distribution and seeding through microglial exosomes.


Assuntos
Doença de Alzheimer , Exossomos , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Doença de Alzheimer/patologia , Animais , Camundongos , Camundongos Knockout , Microglia/patologia , Proteômica
14.
bioRxiv ; 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35411336

RESUMO

Prevention of infection and propagation of SARS-CoV-2 is of high priority in the COVID-19 pandemic. Here, we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 Spike protein, thereby inhibiting viral entry, infectivity, and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and thus spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E-protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model, and thus provide a novel avenue for therapy.

15.
J Neurosci ; 30(34): 11501-5, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-20739572

RESUMO

NMDA receptors are typically excited by a combination of glutamate and glycine. Here we describe excitatory responses in CNS myelin that are gated by a glycine agonist alone and mediated by NR1/NR3 "NMDA" receptor subunits. Response properties include activation by d-serine, inhibition by the glycine-site antagonist CNQX, and insensitivity to the glutamate-site antagonist d-APV. d-Serine responses were abrogated in NR3A-deficient mice. Our results suggest the presence of functional NR1/NR3 receptors in CNS myelin.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Glicina/fisiologia , Bainha de Mielina/fisiologia , Subunidades Proteicas/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Linhagem Celular , Sistema Nervoso Central/fisiologia , Humanos , Camundongos , Camundongos Knockout , Subunidades Proteicas/agonistas , Subunidades Proteicas/genética , Ratos , Ratos Long-Evans , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/farmacologia
16.
Neuropsychopharmacology ; 46(11): 1937-1949, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253856

RESUMO

Angiogenesis or proliferation of endothelial cells plays a role in brain microenvironment homeostasis. Previously we have shown enhanced expression of markers of angiogenesis in the medial prefrontal cortex during abstinence in an animal model of ethanol dependence induced by chronic intermittent ethanol vapor (CIE) and ethanol drinking (ED) procedure. Here we report that systemic injections of the angiogenesis inhibitor endostatin reduced relapse to drinking behavior in female CIE-ED rats without affecting relapse to drinking in male CIE-ED rats, and female and male nondependent ED rats. Endostatin did not alter relapse to sucrose drinking in both sexes. Endostatin reduced expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) in all groups; however, rescued expression of tight junction protein claudin-5 in the prelimbic cortex (PLC) of female CIE-ED rats. In both sexes, CIE-ED enhanced microglial activation in the PLC and this was selectively prevented by endostatin in female CIE-ED rats. Endostatin prevented CIE-ED-induced enhanced NF-kB activity and expression and Fos expression in females and did not alter reduced Fos expression in males. Analysis of synaptic processes within the PLC revealed sexually dimorphic adaptations, with CIE-ED reducing synaptic transmission and altering synaptic plasticity in the PLC in females, and increasing synaptic transmission in males. Endostatin prevented the neuroadaptations in the PLC in females via enhancing phosphorylation of CaMKII, without affecting the neuroadaptations in males. Our multifaceted approach is the first to link PLC endothelial cell damage to the behavioral, neuroimmune, and synaptic changes associated with relapse to ethanol drinking in female subjects, and provides a new therapeutic strategy to reduce relapse in dependent subjects.


Assuntos
Alcoolismo , Alcoolismo/tratamento farmacológico , Animais , Endostatinas , Células Endoteliais , Etanol , Feminino , Masculino , Córtex Pré-Frontal , Ratos
17.
Brain Plast ; 6(1): 113-122, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33680850

RESUMO

BACKGROUND: Acute (ex vivo) and chronic (in vivo) alcohol exposure induces neuroplastic changes in the dorsal striatum, a critical region implicated in instrumental learning. OBJECTIVE: Sex differences are evident in alcohol reward and reinforcement, with female rats consuming higher amount of alcohol in operant paradigms compared to male rats. However, sex differences in the neuroplastic changes produced by acute alcohol in the dorsal striatum have been unexplored. METHODS: Using electrophysiological recordings from dorsal striatal slices obtained from adult male and female rats, we investigated the effects of ex vivo ethanol exposure on synaptic transmission and synaptic plasticity. Ethanol (44 mM) enhanced basal synaptic transmission in both sexes. Ethanol also enhanced long-term potentiation in both sexes. Other measures of synaptic plasticity including paired-pulse ratio were unaltered by ethanol in both sexes. RESULTS: The results suggest that alterations in synaptic plasticity induced by acute ethanol, at a concentration associated with intoxication, could play an important role in alcohol-induced experience-dependent modification of corticostriatal circuits underlying the learning of goal-directed instrumental actions and formation of habits mediating alcohol seeking and taking. CONCLUSIONS: Taken together, understanding the mechanism(s) underlying alcohol induced changes in corticostriatal function may lead to the development of more effective therapeutic agents to reduce habitual drinking and seeking associated with alcohol use disorders.

18.
Mil Med ; 185(Suppl 1): 243-247, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32074348

RESUMO

INTRODUCTION: Blast-induced mild traumatic brain injury was generated in a mouse model using a shock tube to investigate recovery and axonal injury from single blast. METHODS: A supersonic helium wave hit the head of anesthetized male young adult mice with a reflected pressure of 69 psi for 0.2 ms on Day 1. Subsequently, the mice were cardioperfused on Days 2, 5, or 12. The isolated brains were subjected to diffusion tensor imaging. Reduced fractional anisotropy (FA) indicated axonal injury. RESULTS: After single blast, FA showed a biphasic response in the corpus callosum with decrease on Days 2 and 12 and increase on Day 5. CONCLUSIONS: Blast-induced mild traumatic brain injury in a mouse model follows a biphasic FA response within 12 days after a single blast similar to that reported for human subjects.


Assuntos
Anisotropia , Traumatismos por Explosões/complicações , Concussão Encefálica/etiologia , Animais , Traumatismos por Explosões/fisiopatologia , Concussão Encefálica/fisiopatologia , Imagem de Tensor de Difusão/métodos , Modelos Animais de Doenças , Explosões/estatística & dados numéricos , Camundongos
19.
Mol Brain ; 12(1): 104, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801553

RESUMO

Alzheimer's disease (AD) is an aging-related neurological disorder characterized by synaptic loss and dementia. Wnt/ß-catenin signaling is an essential signal transduction pathway that regulates numerous cellular processes including cell survival. In brain, Wnt/ß-catenin signaling is not only crucial for neuronal survival and neurogenesis, but it plays important roles in regulating synaptic plasticity and blood-brain barrier integrity and function. Moreover, activation of Wnt/ß-catenin signaling inhibits amyloid-ß production and tau protein hyperphosphorylation in the brain. Critically, Wnt/ß-catenin signaling is greatly suppressed in AD brain via multiple pathogenic mechanisms. As such, restoring Wnt/ß-catenin signaling represents a unique opportunity for the rational design of novel AD therapies.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Terapia de Alvo Molecular , Via de Sinalização Wnt , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Humanos , Neurogênese , Plasticidade Neuronal
20.
J Clin Invest ; 129(8): 3103-3120, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31112137

RESUMO

Mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis (ALS) are yet unclear. Specific deletion of the ER-component membralin in astrocytes manifested postnatal motor defects and lethality in mice, causing the accumulation of extracellular glutamate through reducing the glutamate transporter EAAT2. Restoring EAAT2 levels in membralin KO astrocytes limited astrocyte-dependent excitotoxicity in motor neurons. Transcriptomic profiles from mouse astrocytic membralin KO motor cortex indicated significant perturbation in KEGG pathway components related to ALS, including downregulation of Eaat2 and upregulation of Tnfrsf1a. Changes in gene expression with membralin deletion also overlapped with mouse ALS models and reactive astrocytes. Our results shown that activation of TNF receptor (TNFR1)-NFκB pathway known to suppress Eaat2 transcription was upregulated with membralin deletion. Further, reduced membralin and EAAT2 levels correlated with disease progression in spinal cord from SOD1-mutant mouse models, and reductions in membralin/EAAT2 were observed in human ALS spinal cord. Importantly, overexpression of membralin in SOD1G93A astrocytes decreased TNFR1 levels and increased EAAT2 expression, and improved motor neuron survival. Importantly, upregulation of membralin in SOD1G93A mice significantly prolonged mouse survival. Together, our study provided a mechanism for ALS pathogenesis where membralin limited glutamatergic neurotoxicity, suggesting that modulating membralin had potentials in ALS therapy.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Córtex Motor/metabolismo , Proteínas do Tecido Nervoso/deficiência , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/patologia , Regulação para Baixo , Transportador 2 de Aminoácido Excitatório/biossíntese , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/genética , Humanos , Camundongos , Camundongos Knockout , Córtex Motor/patologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA