Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nutr ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231871

RESUMO

PURPOSE: Caffeine is a potent central nervous system stimulant that increases the activity of the prefrontal cortex and can improve various cognitive skills. An improvement in these cognitive skills can lead to further benefits in athletic performance. Therefore, it is necessary to clarify the dose-response of caffeine on cognitive performance. This study aimed to determine the effects of different doses of caffeine on sport-related cognitive aspects. METHODS: Twenty-nine healthy physically active young adults were recruited. All participants completed three trials under the following conditions: (a) placebo, (b) 3 mg/kg, or (c) 6 mg/kg body mass of caffeine. In each trial, different cognitive abilities were evaluated with the following battery of tests: reaction time (Dynavision™ D2), anticipation (Bassin Anticipation Timer), sustained attention (Go/No-Go and Eriksen Flanker Test) and memory tests. Moreover, the side effects and the perceived sensation index were recorded 24 h after each test. RESULTS: Reaction time only improved following 6 mg/kg of caffeine intake (Physical reaction time: -0.04 s, 95% CI -0.08 to -0.01 s, P = 0.036, d = 0.5; Motor reaction time: -0.04 s, 95% CI -0.07 to -0.01 s, P = 0.008, d = 0.6) compared to the placebo condition. Anticipation, sustained attention, and memory were not affected after either caffeine dose intake (all P > 0.05). In addition, the 6 mg/kg dose of caffeine augmented the occurrence of the side effects of increased activeness (P = 0.046) and nervousness (P = 0.001). CONCLUSION: Acute intake of 6 mg/kg caffeine is effective in improving reaction time despite increasing the occurrence of side effects in healthy physically active young adults. STUDY REGISTRATION: This study has been registered in ClinicalTrials whose ID is: NCT05995314 (2023-08-08).

2.
Healthcare (Basel) ; 11(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38132037

RESUMO

Peripheral nerve sheath tumors (PNST) comprise schwannomas and neurofibromas. The finding of increased adipose tissue around benign PNSTs has been described as the "split fat sign" on magnetic resonance imaging exams, which is suggestive of an intramuscular or intermuscular location of the tumor. However, few studies have described this sign as a salient ultrasound feature of PNSTs. The main purpose of this study was to retrospectively evaluate the presence of increased fatty tissue deposition around benign PNSTs diagnosed by high-resolution ultrasound. In addition, we aimed to corroborate the presence of vascularization around the affected area. A retrospective analysis of ten cases of PNSTs and two cases of post-traumatic neuromas diagnosed by high-resolution ultrasound was performed with a Logiq® P8 ultrasound with a 2-11 MHz multifrequency linear probe L3-12-D (central frequency: 10 MHz). Localized types of neurofibromas and schwannomas in any location were seen as predominantly hypoechoic tumors with an oval or fusiform shape. Exiting and entering nerves (tail sign) were observed in six cases, showing localized lesions both in intermuscular and subcutaneous locations. The presence of increased hyperechoic tissue (the split fat sign) was noted in cases of solitary intermuscular and intramuscular peripheral nerve sheath tumors, mainly the schwannomas. Though small tumors did not demonstrate the tail sign, the increase in adipose tissue and vascularity on US was well demonstrated. In conclusion, the nerve in continuity forms the basis of the ultrasonographic diagnosis of PNSTs. However, high-resolution US can convincingly demonstrate the increased presence of fat in the upper and lower poles as well as circumferentially in intermuscular or intramuscular benign PNSTs.

3.
Genes (Basel) ; 14(1)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36672791

RESUMO

α-Actinin-3 is a protein with a structural role at the sarcomeric Z-line in skeletal muscle. As it is only present in fast-type muscle fibers, α-actinin-3 is considered a key mechanical component to produce high-intensity muscle contractions and to withstand external tension applied to the skeletal muscle. α-Actinin-3 is encoded by the gene ACTN3, which has a single-nucleotide polymorphism (p.R577X; rs1815739) that affects the expression of α-actinin-3 due to the presence of a stop codon. Individuals homozygous for the 577R allele (i.e., RR genotype) and RX heterozygotes express functional α-actinin-3, while those homozygous for the 577X (i.e., XX genotype) express a non-functional protein. There is ample evidence to support the associations between the ACTN3 genotype and athletic performance, with higher frequencies of the 577R allele in elite and professional sprint and power athletes than in control populations. This suggests a beneficial influence of possessing functional α-actinin-3 to become an elite athlete in power-based disciplines. However, no previous investigation has determined the frequency of the ACTN3 genotypes in elite badminton players, despite this sport being characterized by high-intensity actions of intermittent nature such as changes of direction, accelerations, jumps and smashes. The purpose of this study was to analyze ACTN3 R577X genotype frequencies in professional badminton players to establish whether this polymorphism is associated with elite athlete status. A total of 53 European Caucasian professional badminton players competing in the 2018 European Badminton Championships volunteered to participate in the study. Thirty-one were men (26.2 ± 4.4 years) and twenty-two were women (23.4 ± 4.5 years). Chi-squared tests were used to analyze the differences in the distribution of ACTN3 genotypes (RR, RX and XX) between categories and sexes. The ACTN3 RR genotype was the most frequent in the sample of professional badminton players (RR = 49.1%, RX = 22.6% and XX = 28.3%). None of the badminton players ranked in the world's top ten possessed the XX genotype (RX = 60%, RR = 40%). The distribution of the ACTN3 genotypes was similar between male and female professional badminton players (men: RR = 45.2%, RX = 25.8% and XX = 29.0%; women: RR = 54.5%, RX = 18.2% and XX = 27.3%; χ2 = 0.58; p = 0.750). The distribution of the ACTN3 genotypes in badminton players was different from the 1000 genome database for the European population (χ2 = 15.5; p < 0.001), with an overrepresentation of the RR genotype (p < 0.05) and an underrepresentation of the RX genotype (p < 0.01). In conclusion, the expression of functional α-actinin-3, associated with RR and RX genotypes in the ACTN3 gene may confer an advantage for reaching the status of elite athlete in badminton, and especially the world's top-ten ranking. Large-scale studies with different ethnic backgrounds are needed to confirm the association of the R allele of ACTN3 with badminton performance.


Assuntos
Desempenho Atlético , Esportes com Raquete , Humanos , Masculino , Feminino , Actinina/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Desempenho Atlético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA