Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34210795

RESUMO

Although today the forest cover is continuous in Central Africa, this may have not always been the case, as the scarce fossil record in this region suggests that arid conditions might have significantly reduced tree density during the ice ages. Our aim was to investigate whether the dry ice age periods left a genetic signature on tree species that can be used to infer the date of the past fragmentation of the rainforest. We sequenced reduced representation libraries of 182 samples representing five widespread legume trees and seven outgroups. Phylogenetic analyses identified an early divergent lineage for all species in West Africa (Upper Guinea) and two clades in Central Africa: Lower Guinea-North and Lower Guinea-South. As the structure separating the Northern and Southern clades-congruent across species-cannot be explained by geographic barriers, we tested other hypotheses with demographic model testing using δαδι. The best estimates indicate that the two clades split between the Upper Pliocene and the Pleistocene, a date compatible with forest fragmentation driven by ice age climatic oscillations. Furthermore, we found remarkably older split dates for the shade-tolerant tree species with nonassisted seed dispersal than for light-demanding species with long-distance wind-dispersed seeds. Different recolonization abilities after recurrent cycles of forest fragmentation seem to explain why species with long-distance dispersal show more recent genetic admixture between the two clades than species with limited seed dispersal. Despite their old history, our results depict the African rainforests as a dynamic biome where tree species have expanded relatively recently after the last glaciation.


Assuntos
Floresta Úmida , Dispersão de Sementes/genética , Árvores/genética , África , Variação Genética , Filogenia
2.
Am J Bot ; 107(3): 498-509, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32200549

RESUMO

PREMISE: Few studies have addressed the evolutionary history of tree species from African savannahs. Afzelia contains economically important timber species, including two species widely distributed in African savannahs: A. africana in the Sudanian region and A. quanzensis in the Zambezian region. We aimed to infer whether these species underwent range fragmentation and/or demographic changes, possibly reflecting how savannahs responded to Quaternary climate changes. METHODS: We characterized the genetic diversity and structure of these species across their distribution ranges using nuclear microsatellites (SSRs) and genotyping-by-sequencing (GBS) markers. Six SSR loci were genotyped in 241 A. africana and 113 A. quanzensis individuals, while 2800 high-quality single nucleotide polymorphisms (SNPs) were identified in 30 A. africana individuals. RESULTS: Both species appeared to be mainly outcrossing. The kinship between individuals decayed with the logarithm of the distance at similar rates across species and markers, leading to relatively small Sp statistics (0.0056 for SSR and 0.0054 for SNP in A. africana, 0.0075 for SSR in A. quanzensis). The patterns were consistent with isolation by distance expectations in the absence of large-scale geographic gradients. Bayesian clustering of SSR genotypes did not detect genetic clusters within species. In contrast, SNP data resolved intraspecific genetic clusters in A. africana, illustrating the higher resolving power of GBS. However, these clusters revealed low levels of differentiation and no clear geographical entities, so that they were interpreted as resulting from the isolation by distance pattern rather than from past population fragmentation. CONCLUSIONS: These results suggest that populations have remained connected throughout the large, continuous savannah landscapes. The absence of clear phylogeographic discontinuities, also found in a few other African savannah trees, indicates that their distribution ranges have not been significantly fragmented during the climatic oscillations of the Pleistocene, in contrast to patterns commonly found in African rainforest trees.


Assuntos
Fabaceae , Metagenômica , Teorema de Bayes , Variação Genética , Genética Populacional , Humanos , Repetições de Microssatélites , Filogeografia
3.
Proc Biol Sci ; 284(1866)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29093226

RESUMO

The fossil record in tropical Africa suggests that dry conditions during the Ice Ages caused expansion of savannahs and contraction of the rainforest. Forest refugia have been proposed to be located in areas of Central Africa that currently harbour high rates of endemic species. However, to what extent the forest was fragmented remains unknown. Nuclear microsatellites and plastid sequences of 732 trees of two species occurring in the same habitat-mature lowland evergreen rainforests-but with remarkably different dispersal capacities-animal versus gravity-were analysed. Geographical information system tools revealed intraspecific lineages partially congruent across the two species, suggesting common past barriers to gene flow in Central Africa. According to approximate Bayesian computation, the intraspecific genetic clusters diverged during the Pleistocene (less than 2 Ma), so that intraspecific differentiation is the appropriate scale to test the aridification effect of the Ice Ages on tree populations. Demographic tests revealed clear genetic signals of population expansion in both taxa, possibly following bottleneck events after forest fragmentation, with stronger evidence of expansion after the Penultimate rather than after the Last Glacial Maximum. The differential dispersal capacity may have modulated the particular response of each species to climate change, as revealed by the stronger evidence of expansion found in the animal-dispersed species than in the gravity-dispersed one.


Assuntos
Mudança Climática , Variação Genética , Plantas/genética , Floresta Úmida , África Central , Teorema de Bayes , Filogenia , Filogeografia , Dinâmica Populacional
4.
Mol Phylogenet Evol ; 107: 270-281, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27825871

RESUMO

Polyploidy has rarely been documented in rain forest trees but it has recently been found in African species of the genus Afzelia (Leguminosae), which is composed of four tetraploid rain forest species and two diploid dry forest species. The genus Afzelia thus provides an opportunity to examine how and when polyploidy and habitat shift occurred in Africa, and whether they are associated. In this study, we combined three plastid markers (psbA, trnL, ndhF), two nuclear markers (ribosomal ITS and the single-copy PEPC E7 gene), plastomes (obtained by High Throughput Sequencing) and morphological traits, with an extensive taxonomic and geographic sampling to explore the evolutionary history of Afzelia. Both nuclear DNA and morphological vegetative characters separated diploid from tetraploid lineages. Although the two African diploid species were well differentiated genetically and morphologically, the relationships among the tetraploid species were not resolved. In contrast to the nuclear markers, plastid markers revealed that one of the diploid species forms a well-supported clade with the tetraploids, suggesting historical hybridisation, possibly in relation with genome duplication (polyploidization) and habitat shift from dry to rain forests. Molecular dating based on fossil-anchored gene phylogenies indicates that extant Afzelia started diverging c. 14.5 or 20Ma while extant tetraploid species started diverging c. 7.0 or 9.4Ma according to plastid and nuclear DNA, respectively. Additional studies of tropical polyploid plants are needed to assess whether the ploidy-habitat association observed in African Afzelia would reflect a role of polyploidization in niche divergence in the tropics.


Assuntos
Evolução Biológica , Ecossistema , Fabaceae/classificação , Fabaceae/genética , Poliploidia , Árvores/classificação , África , DNA de Plantas/genética , Geografia , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
5.
BMC Ecol Evol ; 21(1): 50, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33784979

RESUMO

BACKGROUND: Comparative phylogeographic studies on rainforest species that are widespread in Central Africa often reveal genetic discontinuities within and between biogeographic regions, indicating (historical) barriers to gene flow, possibly due to repeated and/or long-lasting population fragmentation during glacial periods according to the forest refuge hypothesis. The impact of forest fragmentation seems to be modulated by the ecological amplitude and dispersal capacities of each species, resulting in different demographic histories. Moreover, while multiple studies investigated the western part of Central Africa (Lower Guinea), few have sufficiently sampled the heart of the Congo Basin (Congolia). In this study, we look for genetic discontinuities between populations of the widespread tropical tree Scorodophloeus zenkeri Harms (Fabaceae, Detarioideae) in Central Africa. Additionally, we characterize genetic diversity, selfing rate and fine-scale spatial genetic structure within populations to estimate the gene dispersal capacity of the species. RESULTS: Clear intraspecific genetic discontinuities occur throughout the species' distribution range, with two genetic clusters in Congolia and four in Lower Guinea, and highest differentiation occurring between these bioregions. Genetic diversity is higher in Lower Guinea than Congolia. A spatial genetic structure characteristic of isolation by distance occurs within the genetic clusters. This allowed us to estimate gene dispersal distances (σg) for this outcrossing species with ballistic seed dispersal, which range between 100 and 250 m in areas where S. zenkeri occurs in high densities, and are in the low range of σg values compared to other tropical trees. Gene dispersal distances are larger in low density populations, probably due to extensive pollen dispersal capacity. CONCLUSIONS: Fragmentation of S. zenkeri populations seems to have occurred not only in Lower Guinea but also in the Congo Basin, though not necessarily according to previously postulated forest refuge areas. The lower genetic diversity in Congolia compared to Lower Guinea parallels the known gradient of species diversity, possibly reflecting a stronger impact of past climate changes on the forest cover in Congolia. Despite its bisexual flowers, S. zenkeri appears to be mostly outcrossing. The limited dispersal observed in this species implies that genetic discontinuities resulting from past forest fragmentation can persist for a long time before being erased by gene flow.


Assuntos
Fabaceae , Dispersão de Sementes , África Central , Congo , Florestas , Variação Genética , Filogeografia , Árvores/genética
6.
Front Plant Sci ; 11: 798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625223

RESUMO

The dating of diversification events, including transitions between biomes, is key to elucidate the processes that underlie the assembly and evolution of tropical biodiversity. Afzelia is a widespread genus of tropical trees, threatened by exploitation for its valuable timber, that presents an interesting system to investigate diversification events in Africa. Africa hosts diploid Afzelia species in the savannahs north and south of the Guineo-Congolian rainforest and autotetraploid species confined to the rainforest. Species delimitation and phylogenetic relationships among the diploid and tetraploid species remained unresolved in previous studies using small amounts of DNA sequence data. We used genotyping-by-sequencing in the five widespread Afzelia species in Africa, the savannah species A. africana and A. quanzensis and the rainforest species A. bipindensis, A. pachyloba, and A. bella. Maximum likelihood and coalescent approaches resolved all species as monophyletic and placed the savannah and rainforest taxa into two separate clades corresponding to contrasted ploidy levels. Our data are thus compatible with a single biome shift in Afzelia in Africa, although we were unable to conclude on its direction. SNAPP calibrated species trees show that the savannah diploids started to diversify early, at 12 (9.09-14.89) Ma, which contrasts with a recent and rapid diversification of the rainforest tetraploid clade, starting at 4.22 (3.12 - 5.36) Ma. This finding of older diversification in a tropical savannah clade vs. its sister rainforest clade is exceptional; it stands in opposition to the predominant observation of young ages for savannahs lineages in tropical regions during the relatively recent expansion of the savannah biome.

7.
Appl Plant Sci ; 5(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28224061

RESUMO

PREMISE OF THE STUDY: Southwestern Britain is an emblematic hotspot of polyploid diversity of whitebeams (Sorbus aria agg.; Rosaceae) with ca. 30 polyploid endemic species. The tetraploid S. porrigentiformis is postulated as one of the parents of most of these endemics, along with the sexual diploid S. aria s. str. and the tetraploid S. rupicola. METHODS AND RESULTS: We isolated 16 nuclear microsatellite loci from S. porrigentiformis and characterized them on 45 trees representing the three putative parental species. Eleven loci were polymorphic, and eight of them exhibited species-specific alleles. Allele numbers ranged from one to 11, and observed heterozygosity ranged from 0.40 to 1.00. The intraspecific levels of variation were very low, in agreement with the facultative apomictic reproduction hypothesized for this species. CONCLUSIONS: The species-specific alleles will be useful for tracing the origin of the narrowly distributed Sorbus taxa. In addition, the assessment of diversity levels will help design a conservation strategy for the polyploid complex.

8.
Mar Genomics ; 31: 1-8, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27650377

RESUMO

Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag between observed and estimated diversity is in part due to the elusiveness of most aquatic species and the technical difficulties of exploring extreme environments, as for instance the abyssal plains and polar waters. In the last decade, the rapid development of affordable and flexible high-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from evolutionary biology of non-model organisms to species of commercial relevance for fishing, aquaculture and biomedicine. Instead of providing an exhaustive list of available genomic data, we rather set to present contextualized examples that best represent the current status of the field of marine genomics.


Assuntos
Aquicultura , Organismos Aquáticos/genética , Evolução Biológica , Pesqueiros , Genômica , Oceanos e Mares
9.
Appl Plant Sci ; 3(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26504680

RESUMO

PREMISE OF THE STUDY: Microsatellite markers were isolated in the rainforest tree Lophira alata (Ochnaceae), an important timber tree from Central Africa, and cross-amplified on its savannah counterpart, L. lanceolata. METHODS AND RESULTS: From a microsatellite-enriched library sequenced on a 454 GS FLX platform, 13 primer combinations were identified. Amplification was optimized in two multiplex reactions. The primers amplified di- and trinucelotide repeats, with two to seven alleles per locus. Eleven primers also amplified in L. lanceolata. CONCLUSIONS: Microsatellite primers developed for the genus Lophira displayed sufficient variation to investigate hybridization between congeneric species in the rainforest-savannah transition.

10.
Mol Ecol ; 16(10): 2155-71, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17498238

RESUMO

Inferring the evolutionary history of Mediterranean plant lineages from current genetic, distributional and taxonomic patterns is complex because of a number of palaeoclimatic and geological interconnected factors together with landscape heterogeneity and human influence. Therefore, choosing spatially simplified systems as study groups is a suitable approach. An amplified fragment length polymorphism (AFLP) study using two restriction enzyme combinations (EcoRI/MseI and KpnI/MseI) was carried out to estimate the structure of genetic variation throughout the range of Armeria pungens. This species has a West Iberian-Corso/Sardinian disjunct distribution on coastal sand-dune ecosystems. Bayesian, amova and genetic distance analyses of the AFLP data revealed the same distinguishable genetic groups, which do not match the main geographical disjunction. Corso-Sardinian populations were found to be genetically closer to southwest Portuguese than to those from the Gulf of Cadiz (the closest geographically). Eastwards long-distance dispersal is therefore invoked to explain this geographical disjunction. A GIS analysis based on bioclimatic envelope modelling aiming to characterize the current locations of A. pungens found strong similarities between the Portugal and Corsica-Sardinia sites and less so between these areas and the Gulf of Cadiz. This coincident pattern between AFLP and climatic data suggests that the geographical disjunction is better explained by climatic factors than by the likeliness of a stochastic dispersal event. Such a combined phylogeographical-GIS modelling approach proves to be enlightening in reconstructing the evolutionary history of plant species.


Assuntos
Demografia , Ecossistema , Variação Genética , Filogenia , Plumbaginaceae/genética , Teorema de Bayes , Clima , Análise por Conglomerados , Primers do DNA , Sistemas de Informação Geográfica , Geografia , Região do Mediterrâneo , Modelos Teóricos , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA