Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 583(7817): 620-624, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32669709

RESUMO

Approximately 75% of all breast cancers express the oestrogen and/or progesterone receptors. Endocrine therapy is usually effective in these hormone-receptor-positive tumours, but primary and acquired resistance limits its long-term benefit1,2. Here we show that in mouse models of hormone-receptor-positive breast cancer, periodic fasting or a fasting-mimicking diet3-5 enhances the activity of the endocrine therapeutics tamoxifen and fulvestrant by lowering circulating IGF1, insulin and leptin and by inhibiting AKT-mTOR signalling via upregulation of EGR1 and PTEN. When fulvestrant is combined with palbociclib (a cyclin-dependent kinase 4/6 inhibitor), adding periodic cycles of a fasting-mimicking diet promotes long-lasting tumour regression and reverts acquired resistance to drug treatment. Moreover, both fasting and a fasting-mimicking diet prevent tamoxifen-induced endometrial hyperplasia. In patients with hormone-receptor-positive breast cancer receiving oestrogen therapy, cycles of a fasting-mimicking diet cause metabolic changes analogous to those observed in mice, including reduced levels of insulin, leptin and IGF1, with the last two remaining low for extended periods. In mice, these long-lasting effects are associated with long-term anti-cancer activity. These results support further clinical studies of a fasting-mimicking diet as an adjuvant to oestrogen therapy in hormone-receptor-positive breast cancer.


Assuntos
Neoplasias da Mama/dietoterapia , Neoplasias da Mama/tratamento farmacológico , Dietoterapia/métodos , Jejum/fisiologia , Fulvestranto/uso terapêutico , Animais , Fatores Biológicos/sangue , Neoplasias da Mama/patologia , Dieta Saudável/métodos , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Fulvestranto/administração & dosagem , Humanos , Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos SCID , PTEN Fosfo-Hidrolase/metabolismo , Piperazinas/administração & dosagem , Piperazinas/uso terapêutico , Piridinas/administração & dosagem , Piridinas/uso terapêutico , Receptores de Estrogênio , Receptores de Progesterona , Tamoxifeno/efeitos adversos , Tamoxifeno/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982232

RESUMO

Sinusoidal endothelial cells are the predominant vascular surface of the bone marrow and constitute the functional hematopoietic niche where hematopoietic stem and progenitor cells receive cues for self-renewal, survival, and differentiation. In the bone marrow hematopoietic niche, the oxygen tension is usually very low, and this condition affects stem and progenitor cell proliferation and differentiation and other important functions of this region. Here, we have investigated in vitro the response of endothelial cells to a marked decrease in O2 partial pressure to understand how the basal gene expression of some relevant biological factors (i.e., chemokines and interleukins) that are fundamental for the intercellular communication could change in anoxic conditions. Interestingly, mRNA levels of CXCL3, CXCL5, and IL-34 genes are upregulated after anoxia exposure but become downmodulated by sirtuin 6 (SIRT6) overexpression. Indeed, the expression levels of some other genes (such as Leukemia Inhibitory Factor (LIF)) that were not significantly affected by 8 h anoxia exposure become upregulated in the presence of SIRT6. Therefore, SIRT6 mediates also the endothelial cellular response through the modulation of selected genes in an extreme hypoxic condition.


Assuntos
Células-Tronco Hematopoéticas , Sirtuínas , Células-Tronco Hematopoéticas/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Medula Óssea/metabolismo , Interleucinas/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047732

RESUMO

Sirtuin 6 (SIRT6) is a member of the mammalian NAD+-dependent deac(et)ylase sirtuin family. SIRT6's anti-inflammatory roles are emerging increasingly often in different diseases and cell types, including endothelial cells. In this study, the role of SIRT6 in pro-inflammatory conditions was investigated by engineering human umbilical vein endothelial cells to overexpress SIRT6 (SIRT6+ HUVECs). Our results showed that SIRT6 overexpression affected the levels of adhesion molecules and sustained megakaryocyte proliferation and proplatelet formation. Interestingly, the pro-inflammatory activation of the ATP/purinergic axis was reduced in SIRT6+ HUVECs. Specifically, the TNFα-induced release of ATP in the extracellular space and the increase in pannexin-1 hemichannel expression, which mediates ATP efflux, were hampered in SIRT6+ cells. Instead, NAD+ release and Connexin43 expression were not modified by SIRT6 levels. Moreover, the Ca2+ influx in response to ATP and the expression of the purinergic receptor P2X7 were decreased in SIRT6+ HUVECs. Contrary to extracellular ATP, extracellular NAD+ did not evoke pro-inflammatory responses in HUVECs. Instead, NAD+ administration reduced endothelial cell proliferation and motility and counteracted the TNFα-induced angiogenesis. Altogether, our data reinforce the view of SIRT6 activation as an anti-inflammatory approach in vascular endothelium.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Sirtuínas , Humanos , Trifosfato de Adenosina , Células Endoteliais da Veia Umbilical Humana/metabolismo , NAD , Sirtuínas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
4.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770640

RESUMO

The maintenance of a proper NAD+ pool is essential for cell survival, and tumor cells are particularly sensitive to changes in coenzyme levels. In this view, the inhibition of NAD+ biosynthesis is considered a promising therapeutic approach. Current research is mostly focused on targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD+ biosynthesis from nicotinamide and nicotinic acid, respectively. In several types of cancer cells, both enzymes are relevant for NAD+ biosynthesis, with NAPRT being responsible for cell resistance to NAMPT inhibition. While potent NAMPT inhibitors have been developed, only a few weak NAPRT inhibitors have been identified so far, essentially due to the lack of an easy and fast screening assay. Here we present a continuous coupled fluorometric assay whereby the product of the NAPRT-catalyzed reaction is enzymatically converted to NADH, and NADH formation is measured fluorometrically. The assay can be adapted to screen compounds that interfere with NADH excitation and emission wavelengths by coupling NADH formation to the cycling reduction of resazurin to resorufin, which is monitored at longer wavelengths. The assay system was validated by confirming the inhibitory effect of some NA-related compounds on purified human recombinant NAPRT. In particular, 2-hydroxynicotinic acid, 2-amminonicotinic acid, 2-fluoronicotinic acid, pyrazine-2-carboxylic acid, and salicylic acid were confirmed as NAPRT inhibitors, with Ki ranging from 149 to 348 µM. Both 2-hydroxynicotinic acid and pyrazine-2-carboxylic acid were found to sensitize OVCAR-5 cells to the NAMPT inhibitor FK866 by decreasing viability and intracellular NAD+ levels.


Assuntos
NAD , Niacina , Humanos , NAD/metabolismo , Linhagem Celular Tumoral , Pentosiltransferases , Nicotinamida Fosforribosiltransferase , Citocinas/metabolismo , Niacina/farmacologia
5.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838885

RESUMO

Targeting cancer cells that are highly dependent on the nicotinamide adenine dinucleotide (NAD+) metabolite is a promising therapeutic strategy. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme catalyzing NAD+ production. Despite the high efficacy of several developed NAMPT inhibitors (i.e., FK866 (APO866)) in preclinical studies, their clinical activity was proven to be limited. Here, we report the synthesis of new NAMPT Inhibitors, JJ08, FEI191 and FEI199, which exhibit a broad anticancer activity in vitro. Results show that these compounds are potent NAMPT inhibitors that deplete NAD+ and NADP(H) after 24 h of drug treatment, followed by an increase in reactive oxygen species (ROS) accumulation. The latter event leads to ATP loss and mitochondrial depolarization with induction of apoptosis and necrosis. Supplementation with exogenous NAD+ precursors or catalase (ROS scavenger) abrogates the cell death induced by the new compounds. Finally, in vivo administration of the new NAMPT inhibitors in a mouse xenograft model of human Burkitt lymphoma delays tumor growth and significantly prolongs mouse survival. The most promising results are collected with JJ08, which completely eradicates tumor growth. Collectively, our findings demonstrate the efficient anticancer activity of the new NAMPT inhibitor JJ08 and highlight a strong interest for further evaluation of this compound in hematological malignancies.


Assuntos
Inibidores Enzimáticos , Neoplasias Hematológicas , Nicotinamida Fosforribosiltransferase , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Neoplasias Hematológicas/tratamento farmacológico , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Espécies Reativas de Oxigênio
6.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457169

RESUMO

Myeloid cells, including parenchymal microglia, perivascular and meningeal macrophages, and dendritic cells (DCs), are present in the central nervous system (CNS) and establish an intricate relationship with other cells, playing a crucial role both in health and in neurological diseases. In this context, DCs are critical to orchestrating the immune response linking the innate and adaptive immune systems. Under steady-state conditions, DCs patrol the CNS, sampling their local environment and acting as sentinels. During neuroinflammation, the resulting activation of DCs is a critical step that drives the inflammatory response or the resolution of inflammation with the participation of different cell types of the immune system (macrophages, mast cells, T and B lymphocytes), resident cells of the CNS and soluble factors. Although the importance of DCs is clearly recognized, their exact function in CNS disease is still debated. In this review, we will discuss modern concepts of DC biology in steady-state and during autoimmune neuroinflammation. Here, we will also address some key aspects involving DCs in CNS patrolling, highlighting the neuroprotective nature of DCs and emphasizing their therapeutic potential for the treatment of neurological conditions. Recently, inhibition of the NAD+-dependent deac(et)ylase sirtuin 6 was demonstrated to delay the onset of experimental autoimmune encephalomyelitis, by dampening DC trafficking towards inflamed LNs. Thus, a special focus will be dedicated to sirtuins' role in DCs functions.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Sirtuínas , Animais , Sistema Nervoso Central/metabolismo , Células Dendríticas , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/metabolismo , Sirtuínas/metabolismo
7.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498914

RESUMO

Trichomonas vaginalis is the causative agent of one of the most widespread sexually transmitted diseases in the world. The adhesion of the parasite to the vaginal epithelial cells is mediated by specific proteins and by a complex glycan structure, the lipoglycan (TvLG), which covers the pathogen surface. L-rhamnose is an important component of TvLG, comprising up to 40% of the monosaccharides. Thus, the inhibition of its production could lead to a severe alteration in the TvLG structure, making the L-rhamnose biosynthetic pathway an attractive pharmacologic target. We report the identification and characterization of the first committed and limiting step of the L-rhamnose biosynthetic pathway, UDP-D-glucose 4,6-dehydratase (UGD, EC 4.2.1.76). The enzyme shows a strong preference for UDP-D-glucose compared to dTDP-D-glucose; we propose that the mechanism underlying the higher affinity for the UDP-bound substrate is mediated by the differential recognition of ribose versus the deoxyribose of the nucleotide moiety. The identification of the enzymes responsible for the following steps of the L-rhamnose pathway (epimerization and reduction) was more elusive. However, sequence analyses suggest that in T. vaginalis L-rhamnose synthesis proceeds through a mechanism different from the typical eukaryotic pathways, displaying intermediate features between the eukaryotic and prokaryotic pathways and involving separate enzymes for the epimerase and reductase activities, as observed in bacteria. Altogether, these results form the basis for a better understanding of the formation of the complex glycan structures on TvLG and the possible use of L-rhamnose biosynthetic enzymes for the development of selective inhibitors.


Assuntos
Ramnose , Trichomonas vaginalis , Feminino , Humanos , Ramnose/química , Vias Biossintéticas , Glucose , Hidroliases/metabolismo , Difosfato de Uridina/metabolismo
8.
Molecules ; 27(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080416

RESUMO

Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins' family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins' modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins' and to parasitic sirtuins' modulators. A special focus is dedicated to the sirtuins' modulators identified by the use of virtual screening.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias , Doenças Neurodegenerativas , Sirtuínas , Histonas/metabolismo , Humanos , Neoplasias/tratamento farmacológico
10.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34830007

RESUMO

Primary Open-Angle Glaucoma (POAG) is a neurodegenerative disease, and its clinical outcomes lead to visual field constriction and blindness. POAG's etiology is very complex and its pathogenesis is mainly explained through both mechanical and vascular theories. The trabecular meshwork (TM), the most sensitive tissue of the eye anterior segment to oxidative stress (OS), is the main tissue involved in early-stage POAG, characterized by an increase in pressure. Preclinical assessments of neuroprotective drugs on animal models have not always shown correspondence with human clinical studies. In addition, intra-ocular pressure management after a glaucoma diagnosis does not always prevent blindness. Recently, we have been developing an innovative in vitro 3Dadvanced human trabecular cell model on a millifluidicplatform as a tool to improve glaucoma studies. Herein, we analyze the effects of prolonged increased pressure alone and, in association with OS, on such in vitro platform. Moreover, we verify whethersuch damaged TM triggers apoptosis on neuron-like cells. The preliminary results show that TM cells are less sensitive to pressure elevation than OS, and OS-damaging effects were worsened by the pressure increase. The stressed TM releases harmful signals, which increase apoptosis stimuli on neuron-like cells, suggesting its pivotal role in the glaucoma cascade.


Assuntos
Glaucoma de Ângulo Aberto/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Malha Trabecular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Olho/metabolismo , Olho/patologia , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/patologia , Humanos , Pressão Intraocular/efeitos dos fármacos , Malha Trabecular/metabolismo , Malha Trabecular/patologia
11.
J Biol Chem ; 292(18): 7385-7394, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28314774

RESUMO

The giant virus Mimivirus encodes an autonomous glycosylation system that is thought to be responsible for the formation of complex and unusual glycans composing the fibers surrounding its icosahedral capsid, including the dideoxyhexose viosamine. Previous studies have identified a gene cluster in the virus genome, encoding enzymes involved in nucleotide-sugar production and glycan formation, but the functional characterization of these enzymes and the full identification of the glycans found in viral fibers remain incomplete. Because viosamine is typically found in acylated forms, we suspected that one of the genes might encode an acyltransferase, providing directions to our functional annotations. Bioinformatic analyses indicated that the L142 protein contains an N-terminal acyltransferase domain and a predicted C-terminal glycosyltransferase. Sequence analysis of the structural model of the L142 N-terminal domain indicated significant homology with some characterized sugar acetyltransferases that modify the C-4 amino group in the bacillosamine or perosamine biosynthetic pathways. Using mass spectrometry and NMR analyses, we confirmed that the L142 N-terminal domain is a sugar acetyltransferase, catalyzing the transfer of an acetyl moiety from acetyl-CoA to the C-4 amino group of UDP-d-viosamine. The presence of acetylated viosamine in vivo has also been confirmed on the glycosylated viral fibers, using GC-MS and NMR. This study represents the first report of a virally encoded sugar acetyltransferase.


Assuntos
Aciltransferases/química , Proteínas do Capsídeo/química , Mimiviridae/enzimologia , Aciltransferases/metabolismo , Proteínas do Capsídeo/metabolismo , Glicosilação , Domínios Proteicos
12.
Bioorg Med Chem ; 25(20): 5849-5858, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28958848

RESUMO

The NAD+-dependent deacetylase SIRT6 is an emerging cancer drug target, whose inhibition sensitizes cancer cells to chemo-radiotherapy and has pro-differentiating effects. Here we report on the identification of novel SIRT6 inhibitors with a salicylate-based structure. The new SIRT6 inhibitors show improved potency and specificity compared to the hit inhibitor identified in an in silico compound screen. As predicted based on SIRT6 biological roles, the new leads increase histone 3 lysine 9 acetylation and glucose uptake in cultured cells, while blocking TNF-α production and T lymphocyte proliferation. Notably, the new SIRT6 inhibitors effectively sensitize pancreatic cancer cells to gemcitabine. Finally, studies of compound fingerprinting and pharmacokinetics defined the drug-like properties of one of the new SIRT6 inhibitors, potentially allowing for subsequent in vivo proof-of-concept studies. In conclusion, new SIRT6 inhibitors with a salicylate-like structure were identified, which are active in cells and could potentially find applications in disease conditions, including cancer and immune-mediated disorders.


Assuntos
Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Salicilatos/química , Sirtuínas/antagonistas & inibidores , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Imunossupressores/química , Imunossupressores/farmacologia , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Salicilatos/farmacologia , Sirtuínas/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos
13.
Proc Natl Acad Sci U S A ; 110(34): 13956-60, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23918378

RESUMO

The major capsid protein Vp54 from the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains four Asn-linked glycans. The structure of the four N-linked oligosaccharides and the type of substitution at each glycosylation site was determined by chemical, spectroscopic, and spectrometric analyses. Vp54 glycosylation is unusual in many ways, including: (i) unlike most viruses, PBCV-1 encodes most, if not all, of the machinery to glycosylate its major capsid protein; (ii) the glycans are attached to the protein by a ß-glucose linkage; (iii) the Asn-linked glycans are not located in a typical N-X-(T/S) consensus site; and (iv) the process probably occurs in the cytoplasm. The four glycoforms share a common core structure, and the differences are related to the nonstoichiometric presence of two monosaccharides. The most abundant glycoform consists of nine neutral monosaccharide residues, organized in a highly branched fashion. Among the most distinctive features of the glycoforms are (i) a dimethylated rhamnose as the capping residue of the main chain, (ii) a hyperbranched fucose unit, and (iii) two rhamnose residues with opposite absolute configurations. These glycoforms differ from what has been reported so far in the three domains of life. Considering that chloroviruses and other members of the family Phycodnaviridae may have a long evolutionary history, we suggest that the chlorovirus glycosylation pathway is ancient, possibly existing before the development of the endoplasmic reticulum and Golgi pathway, and involves still unexplored mechanisms.


Assuntos
Proteínas do Capsídeo/química , Chlorella/virologia , DNA Ligases/química , Oligossacarídeos/química , Paramecium/microbiologia , Proteínas Virais/química , Proteínas do Capsídeo/isolamento & purificação , Proteínas do Capsídeo/metabolismo , DNA Ligases/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Monossacarídeos/química , Oligossacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas Virais/metabolismo
14.
J Biol Chem ; 289(35): 24428-39, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25035429

RESUMO

Giant viruses mimicking microbes, by the sizes of their particles and the heavily glycosylated fibrils surrounding their capsids, infect Acanthamoeba sp., which are ubiquitous unicellular eukaryotes. The glycans on fibrils are produced by virally encoded enzymes, organized in gene clusters. Like Mimivirus, Megavirus glycans are mainly composed of virally synthesized N-acetylglucosamine (GlcNAc). They also contain N-acetylrhamnosamine (RhaNAc), a rare sugar; the enzymes involved in its synthesis are encoded by a gene cluster specific to Megavirus close relatives. We combined activity assays on two enzymes of the pathway with mass spectrometry and NMR studies to characterize their specificities. Mg534 is a 4,6-dehydratase 5-epimerase; its three-dimensional structure suggests that it belongs to a third subfamily of inverting dehydratases. Mg535, next in the pathway, is a bifunctional 3-epimerase 4-reductase. The sequential activity of the two enzymes leads to the formation of UDP-l-RhaNAc. This study is another example of giant viruses performing their glycan synthesis using enzymes different from their cellular counterparts, raising again the question of the origin of these pathways.


Assuntos
Carboidratos/biossíntese , Vírus de DNA/genética , Genoma Viral , Sequência de Aminoácidos , Vias Biossintéticas , Carboidratos/química , Vírus de DNA/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
15.
Int J Mol Sci ; 16(12): 29315-28, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26690138

RESUMO

Glycosylation of surface molecules is a key feature of several eukaryotic viruses, which use the host endoplasmic reticulum/Golgi apparatus to add carbohydrates to their nascent glycoproteins. In recent years, a newly discovered group of eukaryotic viruses, belonging to the Nucleo-Cytoplasmic Large DNA Virus (NCLDV) group, was shown to have several features that are typical of cellular organisms, including the presence of components of the glycosylation machinery. Starting from initial observations with the chlorovirus PBCV-1, enzymes for glycan biosynthesis have been later identified in other viruses; in particular in members of the Mimiviridae family. They include both the glycosyltransferases and other carbohydrate-modifying enzymes and the pathways for the biosynthesis of the rare monosaccharides that are found in the viral glycan structures. These findings, together with genome analysis of the newly-identified giant DNA viruses, indicate that the presence of glycogenes is widespread in several NCLDV families. The identification of autonomous viral glycosylation machinery leads to many questions about the origin of these pathways, the mechanisms of glycan production, and eventually their function in the viral replication cycle. The scope of this review is to highlight some of the recent results that have been obtained on the glycosylation systems of the large DNA viruses, with a special focus on the enzymes involved in nucleotide-sugar production.


Assuntos
Vírus de DNA/metabolismo , Proteínas Virais/metabolismo , Animais , Evolução Molecular , Glicoproteínas/metabolismo , Glicosilação , Glicosiltransferases/fisiologia , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional
16.
Glycobiology ; 24(1): 51-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24107487

RESUMO

Mimivirus is a giant DNA virus belonging to the Megaviridae family and infecting unicellular Eukaryotes of the genus Acanthamoeba. The viral particles are characterized by heavily glycosylated surface fibers. Several experiments suggest that Mimivirus and other related viruses encode an autonomous glycosylation system, forming viral glycoproteins independently of their host. In this study, we have characterized three Mimivirus proteins involved in the de novo uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) production: a glutamine-fructose-6-phosphate transaminase (CDS L619), a glucosamine-6-phosphate N-acetyltransferase (CDS L316) and a UDP-GlcNAc pyrophosphorylase (CDS R689). Sequence and enzymatic analyses have revealed some unique features of the viral pathway. While it follows the eukaryotic-like strategy, it also shares some properties of the prokaryotic pathway. Phylogenetic analyses revealed that the Megaviridae enzymes cluster in monophyletic groups, indicating that they share common ancestors, but did not support the hypothesis of recent acquisitions from one of the known hosts. Rather, viral clades branched at deep nodes in phylogenetic trees, forming independent clades outside sequenced cellular organisms. The intermediate properties between the eukaryotic and prokaryotic pathways, the phylogenetic analyses and the fact that these enzymes are shared between most of the known members of the Megaviridae family altogether suggest that the viral pathway has an ancient origin, resulting from lateral transfers of cellular genes early in the Megaviridae evolution, or from vertical inheritance from a more complex cellular ancestor (reductive evolution hypothesis). The identification of a virus-encoded UDP-GlcNAc pathway reinforces the concept that GlcNAc is a ubiquitous sugar representing a universal and fundamental process in all organisms.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Mimiviridae/enzimologia , Filogenia , Uridina Difosfato Ácido N-Acetilmurâmico/biossíntese , Proteínas Virais/metabolismo , Acanthamoeba/virologia , Mimiviridae/genética , Uridina Difosfato Ácido N-Acetilmurâmico/genética , Proteínas Virais/genética
17.
J Biol Chem ; 287(5): 3009-18, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22157758

RESUMO

Mimivirus is one the largest DNA virus identified so far, infecting several Acanthamoeba species. Analysis of its genome revealed the presence of a nine-gene cluster containing genes potentially involved in glycan formation. All of these genes are co-expressed at late stages of infection, suggesting their role in the formation of the long fibers covering the viral surface. Among them, we identified the L136 gene as a pyridoxal phosphate-dependent sugar aminotransferase. This enzyme was shown to catalyze the formation of UDP-4-amino-4,6-dideoxy-D-glucose (UDP-viosamine) from UDP-4-keto-6-deoxy-D-glucose, a key compound involved also in the biosynthesis of L-rhamnose. This finding further supports the hypothesis that Mimivirus encodes a glycosylation system that is completely independent of the amoebal host. Viosamine, together with rhamnose, (N-acetyl)glucosamine, and glucose, was found as a major component of the viral glycans. Most of the sugars were associated with the fibers, confirming a capsular-like nature of the viral surface. Phylogenetic analysis clearly indicated that L136 was not a recent acquisition from bacteria through horizontal gene transfer, but it was acquired very early during evolution. Implications for the origin of the glycosylation machinery in giant DNA virus are also discussed.


Assuntos
Evolução Molecular , Glucosamina/análogos & derivados , Mimiviridae/enzimologia , Mimiviridae/genética , Transaminases/genética , Transaminases/metabolismo , Acanthamoeba/virologia , DNA Viral/genética , DNA Viral/metabolismo , Genes Virais/fisiologia , Glucosamina/genética , Glucosamina/metabolismo , Glicosilação , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
18.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765125

RESUMO

Recently, the development of sirtuin small molecule inhibitors (SIRTIs) has been gaining attention for the treatment of different cancer types, but also to contrast neurodegenerative disease, diabetes, and autoimmune syndromes. In the search for SIRT2 modulators, the availability of several X-crystallographic data regarding SIRT2-ligand complexes has allowed for setting up a structure-based study, which is herein presented. A set of 116 SIRT2 inhibitors featuring different chemical structures has been collected from the literature and used for molecular docking studies involving 4RMG and 5MAT PDB codes. The information found highlights key contacts with the SIRT2 binding pocket such as Van der Waals and π-π stacking with Tyr104, Phe119, Phe234, and Phe235 in order to achieve high inhibitory ability values. Following the preliminary virtual screening studies, a small in-house library of compounds (1a-7a), previously investigated as putative HSP70 inhibitors, was described to guide the search for dual-acting HSP70/SIRT2 inhibitors. Biological and enzymatic assays validated the whole procedure. Compounds 2a and 7a were found to be the most promising derivatives herein proposed.

19.
Biofactors ; 49(6): 1205-1222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409789

RESUMO

Reduction in oxygen levels is a key feature in the physiology of the bone marrow (BM) niche where hematopoiesis occurs. The BM niche is a highly vascularized tissue and endothelial cells (ECs) support and regulate blood cell formation from hematopoietic stem cells (HSCs). While in vivo studies are limited, ECs when cultured in vitro at low O2 (<5%), fail to support functional HSC maintenance due to oxidative environment. Therefore, changes in EC redox status induced by antioxidant molecules may lead to alterations in the cellular response to hypoxia likely favoring HSC self-renewal. To evaluate the impact of redox regulation, HUVEC, exposed for 1, 6, and 24 h to 3% O2 were treated with N-(N-acetyl-l-cysteinyl)-S-acetylcysteamine (I-152). Metabolomic analyses revealed that I-152 increased glutathione levels and influenced the metabolic profiles interconnected with the glutathione system and the redox couples NAD(P)+/NAD(P)H. mRNA analysis showed a lowered gene expression of HIF-1α and VEGF following I-152 treatment whereas TRX1 and 2 were stimulated. Accordingly, the proteomic study revealed the redox-dependent upregulation of thioredoxin and peroxiredoxins that, together with the glutathione system, are the main regulators of intracellular ROS. Indeed, a time-dependent ROS production under hypoxia and a quenching effect of the molecule were evidenced. At the secretome level, the molecule downregulated IL-6, MCP-1, and PDGF-bb. These results suggest that redox modulation by I-152 reduces oxidative stress and ROS level in hypoxic ECs and may be a strategy to fine-tune the environment of an in vitro BM niche able to support functional HSC maintenance.


Assuntos
Células Endoteliais , NAD , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , NAD/metabolismo , Proteômica , Oxirredução , Hipóxia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Glutationa/metabolismo , Oxigênio/metabolismo , Compostos de Enxofre , Compostos de Sulfidrila
20.
Biomed Pharmacother ; 166: 115326, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611438

RESUMO

Sirtuin 6 (SIRT6) has a critical role in cutaneous Squamous Cell Carcinoma (cSCC): SIRT6 silencing in skin SCC cells has pro-differentiating effects and SIRT6 deletion abrogated DMBA-TPA-induced skin tumorigenesis in mice. On the other hand, SIRT6 acts as tumor suppressor in SCC by enhancing glycolysis in tumor propagating cells. Herein, pharmacological modulation of SIRT6 deacetylase activity was investigated in cSCC, with S6 (inhibitor) or MDL-800 (activator). In cSCC cells, S6 recreated the pro-differentiating effects of SIRT6 silencing, as the levels of Keratin 1, Keratin 10 and Loricrin were upregulated compared to controls. Next, the effects of SIRT6 pharmacological modulation were evaluated in a DMBA-TPA-induced skin cancer mouse model. Mice treated with the inhibitor S6 in a preventive approach, i.e. at the beginning of the promotion stage, presented reduced number and size of papillomas, compared to the controls. The epidermal hyperproliferation marker Keratin 6 and the cSCC marker Keratin 8 were less abundant when SIRT6 was inhibited. In S6-treated lesions, the Epithelial-Mesenchymal Transition (EMT) markers Zeb1 and Vimentin were less expressed compared to untreated lesions. In a therapeutic approach, i.e. treatment starting after papilloma appearance, the S6 group presented reduced papillomas (number and size), whereas MDL-800-treated mice displayed an opposite trend. In S6-treated lesions, Keratin 6 and Keratin 8 were less expressed, EMT was less advanced, with a higher E-cadherin/Vimentin ratio, indicating a delayed carcinogenesis when SIRT6 was inhibited. Our results confirm that SIRT6 plays a role in skin carcinogenesis and suggest SIRT6 pharmacological inhibition as a promising strategy in cSCC.


Assuntos
Carcinoma de Células Escamosas , Papiloma , Sirtuínas , Neoplasias Cutâneas , Animais , Camundongos , Neoplasias Cutâneas/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Queratina-8 , Vimentina , Queratina-6 , Carcinogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA