Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 27(66): 16415-16421, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34599532

RESUMO

The assembly of two tripyridinium-tricarboxylate ligands and different metal ions leads to seven isostructural MOFs, which show novel 2D→2D supramolecular entanglement featuring catenane-like interlocking of tricyclic cages. The MOFs show tripyridinium-afforded and metal-modulated photoresponsive properties. The MOFs with d10 metal centers (1-Cd, 1-Zn, 2-Cd, 2-Zn) show fast and reversible photochromism and concomitant fluorescence quenching, 1-Ni displays slower photochromism but does not fluoresce, and 1-Co and 2-Co are neither photochromic nor fluorescent. It is shown here that the network entanglement dictates donor-acceptor close contacts, which enable fluorescence originated from interligand charge transfer. The contacts also allow photoinduced electron transfer, which underlies photochromism and concomitant fluorescence response. The metal dependence in fluorescence and photochromism can be related to energy transfer through metal-centered d-d transitions. In addition, 1-Cd is demonstrated to be a potential fluorescence sensor for sensitive and selective detection of UO2 2+ in water.

2.
ACS Appl Mater Interfaces ; 12(39): 43958-43966, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32880426

RESUMO

Smart materials that respond to chemical stimuli with color or luminescence changes are highly desirable for daily-life and high-tech applications. Here, we report a novel porous metal-organic framework (MOF) that shows multiple, selective, and discriminative responsive properties owing to the combination of different functional ingredients [tripyridinium chromogen, Eu(III) luminophore, cationic framework, and special porous structure]. The MOF contains two interpenetrated three-dimensional cationic coordination networks built of a tetrahedral [Eu4(µ3-OH)4] cluster and a tripyridinium-tricarboxylate zwitterionic linker. It shows reversible and discriminative chromic response to aliphatic amines and aniline through different host-guest interactions between electron-deficient pyridinium and electron-rich amines. The size- and shape-selective response to aliphatic amines is ascribed to the radical formation through host-guest electron transfer, whereas the response to aniline is ascribed to the formation of sandwich-type acceptor-donor-acceptor complexes. The MOF is capable of reversible anion exchange with various anions and shows selective and discriminative ionochromic response to iodide, bromide, and thiocyanate, which is attributed to charge-transfer complexation. The above chromic behaviors are accompanied by efficient quenching of Eu(III) photoluminescence. The MOF represents a multi-stimuli dual-output responsive system. It can be used for discrimination and identification of anions and amines. The potential use in invisible printing, reusable sensory films, and optical switches was demonstrated by the ink and the membrane made of the MOF and organic polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA