Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 12(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38930541

RESUMO

This study demonstrates that Lactobacillus can produce exopolysaccharides (EPSs) using alternative carbon sources, such as sugarcane molasses and glycerol. After screening 22 strains of Lactobacillus to determine which achieved the highest production of EPS based on dry weight at 37 °C, the strain Ke8 (L. casei) was selected for new experiments. The EPS obtained using glycerol and glucose as carbon sources was classified as a heteropolysaccharide composed of glucose and mannose, containing 1730 g.mol-1, consisting of 39.4% carbohydrates and 18% proteins. The EPS obtained using molasses as the carbon source was characterized as a heteropolysaccharide composed of glucose, galactose, and arabinose, containing 1182 g.mol-1, consisting of 52.9% carbohydrates and 11.69% proteins. This molecule was characterized using Size Exclusion Chromatography (HPLC), Gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). The existence of polysaccharides was confirmed via FT-IR and NMR analyses. The results obtained suggest that Lacticaseibacillus casei can grow in media that use alternative carbon sources such as glycerol and molasses. These agro-industry residues are inexpensive, and their use contributes to sustainability. The lack of studies regarding the use of Lacticaseibacillus casei for the production of EPS using renewable carbon sources from agroindustry should be noted.

2.
Int J Biol Macromol ; 249: 126016, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37516224

RESUMO

Films and coatings manufactured with bio-based renewable materials, such as biopolymers and essential oils, could be a sustainable and eco-friendly alternative for protecting and preserving agricultural products. In this work, we developed films and coatings from pectin and chitosan to protect strawberries (Fragaria x ananassa Duch.) from spoilage and microbial contamination. We developed three coatings containing equal amounts of glycerol and Sicilian lemon essential oil (LEO) nanoemulsion. We identified seventeen chemicals from LEO by GC-MS chromatogram, including d-limonene, α-Pinene, ß-Pinene, and γ-Terpinene. The pectin and chitosan coatings were further characterized using different physicochemical, mechanical, and biological methods. The films demonstrated satisfactory results in strength and elongation at the perforation as fruit packaging. In addition, the coatings did not influence the weight and firmness of the strawberry pulps. We observed that 100 % essential oil was released in 1440 min resulting from the erosion process. Also, the oil preserved the chemical stability of the films. Antioxidant activity (AA), measured by Electron Paramagnetic Resonance (EPR), showed that the coatings loaded with 2 % LEO nanoemulsion (PC + oil) showed that almost 50 % of AA from LEO nanoemulsion was preserved. The chitosan and the pectin-chitosan coatings (PC + oil) inhibited filamentous fungi and yeast contaminations in strawberries for at least 14 days, showing a relationship between the AA and antimicrobial results.


Assuntos
Quitosana , Fragaria , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Fragaria/microbiologia , Quitosana/química , Pectinas/farmacologia , Pectinas/química , Antioxidantes/farmacologia , Antioxidantes/química , Conservação de Alimentos/métodos
3.
Front Bioeng Biotechnol ; 10: 794460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35519607

RESUMO

Environmental contamination caused by inorganic compounds is a major problem affecting soils and surface water. Most remediation techniques are costly and generally lead to incomplete removal and production of secondary waste. Nanotechnology, in this scenario with the zero-valent iron nanoparticle, represents a new generation of environmental remediation technologies. It is non-toxic, abundant, cheap, easy to produce, and its production process is simple. However, in order to decrease the aggregation tendency, the zero-iron nanoparticle is frequently coated with chemical surfactants synthesized from petrochemical sources, which are persistent or partially biodegradable. Biosurfactants (rhamnolipids), extracellular compounds produced by microorganisms from hydrophilic and hydrophobic substrates can replace synthetic surfactants. This study investigated the efficiency of a rhamnolipid biosurfactant on the aggregation of nanoscale zer-valent iron (nZVI) and its efficiency in reducing nitrate in simulated groundwater at pH 4.0. Two methods were tested: 1) adding the rhamnolipid during chemical synthesis and 2) adding the rhamnolipid after chemical synthesis of nZVI. Scanning electron microscopy field emission, X-ray diffractometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, Dynamic Light Scattering, and zeta potential measurements were used to characterize bare nZVI and rhamnolipid-coated nZVI. The effects of the type of nZVI and initial NO3 concentration were examined. Nanoscale zer-valent iron with the addition of the rhamnolipid after synthesis achieved the best removal rate of nitrate (about 78%), with an initial nitrate concentration of 25 mg L-1. The results suggest that nZVI functionalized with rhamnolipids is a promising strategy for the in situ remediations of groundwater contaminated by NO3, heavy metal, and inorganic carbon.

4.
Colloids Surf B Biointerfaces ; 177: 228-234, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753959

RESUMO

Hydrophobic drugs, such as methotrexate, are not easily delivered into the human body. Therefore, the use of amphiphilic nanoplatforms to the transport of these drugs through the bloodstream is a challenge. While the hydrophobic region interacts with the drug, the hydrophilic outer layer enhances its bioavailability and circulation time. Poly (ethylene glycol)-block-poly(ε-caprolactone) PEG-b-PCL micelles are biodegradable and biocompatible, allowing its use as a nanocarrier for drug delivery systems. The stealth property of PEG that composes the outer layer of nanoplatforms, makes the micelle unperceivable to phagocytic cells, increasing the circulation time in the human body. In addition, folic acid functionalization enables micelle selectively targeting to cancer cells, improving treatment efficiency and reducing side effects. In this work, PEG-b-PCL copolymer was synthesized by ring opening polymerization (ROP) of the ε-caprolactone with Poly(ethylene glycol) as a macroinitiator and tin(II) 2-ethyl hexanoate as a catalyst. Functionalization of such micelles with folic acid occurred through the modification of the PEG terminal group. The surface modification of the copolymer micelles resulted in higher critical micellar concentration (CMC), increasing approximately 100 times. The synthesis of the copolymers resulted in molecular weight around 3000 g mol-1 with low polydispersity. The polymer micelles have a hydrodynamic diameter in the range of 100-200 nm and the functionalized sample doesn't show aggregation in the considered pH range. High incorporation efficiency was obtained with a minimum percentage of 85%. The drug release profile and linearization from the Peppas model confirmed the interaction of methotrexate with the hydrophobic segment of the copolymer and its release mechanism by relaxation and/or degradation of the chains, making PEG-b-PCL micelles suitable candidates for hydrophobic drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Lactonas/química , Metotrexato/química , Polietilenoglicóis/química , Animais , Sobrevivência Celular , Células Cultivadas , Coloides/síntese química , Coloides/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lactonas/síntese química , Camundongos , Micelas , Estrutura Molecular , Células NIH 3T3 , Tamanho da Partícula , Polietilenoglicóis/síntese química , Propriedades de Superfície
5.
Carbohydr Polym ; 178: 378-385, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29050608

RESUMO

This study describes the synthesis of magnetic nanohydrogels by miniemulsion polymerization technique. Dextran was derivatized by the glycidyl methacrylate to anchor vinyl groups on polysaccharides backbone, allowing its use as a macromonomer for miniemulsion polymerization, as confirmed by proton nuclear magnetic resonance spectroscopy (13C NMR). Magnetite nanoparticles were synthesized by coprecipitation, followed by air oxidation to maghemite. The results of X-ray diffractometry (XRD), Raman and transmission electron microscopy (TEM) analysis showed that maghemite nanoparticles were obtained with a diameter of 5.27nm. The entrapment of iron oxide nanoparticles in a dextran nanohydrogel matrix was confirmed by thermogravimetric analysis (TGA), scanning transmission electron microscopy (STEM) and Zeta potential data. The magnetic nanohydrogels presented superparamagnetic behavior and were colloidal stable in physiological during 30days. Our findings suggest that the synthesized magnetic nanohydrogel are potential candidates for use in drug delivery systems due to its physicochemical and magnetic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA