Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Pharm ; 21(1): 38-52, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37646561

RESUMO

The cisplatin encapsulation into carbon nanohorns (CNH) is a promising nanoformulation to circumvent the drug dissipation and to specifically accumulate it in tumor sites. Herein, biased molecular dynamics simulations were used to analyze the transmembrane transport of the CNH loaded with cisplatin through a breast cancer cell membrane prototype. The simulations revealed a four-stage mechanism: approach, insertion, permeation, and internalization. Despite the lowest structural disturbance of the membrane provided by the nanocarrier, the average free energy barrier for the translocation was 55.2 kcal mol-1, suggesting that the passive process is kinetically unfavorable. In contrast, the free energy profiles revealed potential wells of -6.8 kcal mol-1 along the insertion stage in the polar heads region of the membrane, which might enhance the retention of the drug in tumor sites; therefore, the most likely cisplatin delivery mechanism should involve the adsorption and retention of CNH on the surface of cancer cells, allowing the loaded cisplatin be slowly released and passively transported through the cell membrane.


Assuntos
Neoplasias da Mama , Cisplatino , Humanos , Feminino , Cisplatino/química , Carbono , Neoplasias da Mama/tratamento farmacológico , Transporte Biológico , Membrana Celular
2.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998995

RESUMO

Polytetrafluoroethylene (PTFE) and, by extension, fluoropolymers are ubiquitous in science, life, and the environment as perfluoroalkyl pollutants (PFAS). In all cases, it is difficult to transform these materials due to their chemical inertness. Herein, we report a direct amination process of PTFE and some fluoropolymers such as polyvinylidene fluoride (PVDF) and Nafion by lithium alkylamide salts. Synthesizing these reactants extemporaneously between lithium metal and an aliphatic primary di- or triamine that also serves as a solvent leads to the rapid nucleophilic substitution of fluoride by an alkylamide moiety when in contact with the fluoropolymer. Moreover, lithium alkylamides dissolved in suitable solvents other than amines can react with fluoropolymers. This highly efficient one-pot process opens the way for further surface or bulk modification if needed, providing an easy, inexpensive, and fast experiment protocol on large scales.

3.
Anal Chem ; 95(34): 12623-12630, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37587130

RESUMO

In this work, early-stage Aß42 aggregates were detected using a real-time fast amyloid seeding and translocation (RT-FAST) assay. Specifically, Aß42 monomers were incubated in buffer solution with and without preformed Aß42 seeds in a quartz nanopipette coated with L-DOPA. Then, formed Aß42 aggregates were analyzed on flyby resistive pulse sensing at various incubation time points. Aß42 aggregates were detected only in the sample with Aß42 seeds after 180 min of incubation, giving an on/off readout of the presence of preformed seeds. Moreover, this RT-FAST assay could detect preformed seeds spiked in 4% cerebrospinal fluid/buffer solution. However, in this condition, the time to detect the first aggregates was increased. Analysis of Cy3-labeled Aß42 monomer adsorption on a quartz substrate after L-DOPA coating by confocal fluorescence spectroscopy and molecular dynamics simulation showed the huge influence of Aß42 adsorption on the aggregation process.


Assuntos
Levodopa , Quartzo , Proteínas Amiloidogênicas , Sementes
4.
J Chem Inf Model ; 63(19): 6141-6155, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37751589

RESUMO

Breast cancer is one of the most frequent modalities of cancer worldwide, with notable mortality. The medication based on platinum drugs (cisplatin (cddp), carboplatin (cpx), and oxaliplatin (oxa)) is a conventional chemotherapy despite severe side effects and the development of drug resistance. In order to provide a deeper molecular description of the influx and efflux processes of platinum drugs through breast cancer tissues, this study focuses on molecular dynamics (MD) simulations of the passive translocation process through a realistic plasma membrane prototype of human breast cancer cell (c_memb). The results showed that the permeation events were mainly mediated by neutral lipids (DOPC, DOPE, and cholesterol), producing a low and temporary membrane deformation. The drug insertion in the region of polar heads was the most favorable stage of the translocation mechanism, especially for cddp and oxa with potential wells of -8.6 and -9.8 kcal mol-1, respectively. However, the potentials of mean force (PMF) revealed unfavorable kinetics for the permeation of these drugs through lipid tails, with energy barriers of 28.3 (cddp), 32.2 (cpx), and 30.4 kcal mol-1 (oxa). The low permeability coefficients (P) of cpx and oxa, which were 3 and 1 orders of magnitude inferior than for cddp, resulted from the high energy barriers for their traslocation processes through the membrane. The obtained results provide a more accurate picture of the permeation of Pt(II)-based drugs through breast cancer cells, which may be relevant for the design and evaluation of new platinum complexes.

5.
J Phys Chem A ; 125(9): 1860-1869, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33625857

RESUMO

Several mechanisms for the electropolymerization of pyrrole have been proposed since the first report 40 years ago. However, none of them were consensual despite a range of assumptions. We simulated and explained the preliminary steps governing the electropolymerization of pyrrole in a charged model interface using first-principles molecular dynamics calculations to solve the problem. We have shown under these conditions that adjacent pyrrole molecules in water can react together, causing their electropolymerization at the interface with a biased platinum electrode in anodic oxidation. In this work, the effective screening medium method that prevents energy divergence of the system was applied to different configurations of pyrrole, water, and electrolyte molecules to best screen the phase space. Furthermore, we worked on a Pt(100) electrode surface in an aqueous electrolyte to be as close as possible to the experimental conditions, MD taking the average of their different orientations.

6.
J Chem Phys ; 154(10): 104901, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33722042

RESUMO

Solid-state nanopores are a promising platform for characterizing proteins. In order to improve their lifetime and prevent fouling, Polyethylene Glycol (PEG) grafting is one of the most efficient and low-cost solutions. Different models to calculate the PEG thickness do not consider their interaction with the nanopore inner surface nor the effect of confinement. Here, we investigate by molecular dynamic simulation the PEG conformation inside a nanopore in the case of hydrophobic and hydrophilic nanopores. Our results reveal that the nanopore inner surface plays a role in the PEG organization and, thus, in the speed of the salt constituent. The resulting pair interaction between PEG and its environment clearly shows a more important affinity for K+ compared to Li+ cations.

7.
Proteins ; 88(1): 94-105, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31294850

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is nowadays envisaged as a natural cytokine useful in nanomedicine to eradicate the cancer cells and not the healthy surrounding ones. However, it suffers from cell resistance and strong dispersion in body to prove its efficiency. The understanding at the molecular level of the TRAIL interaction with death receptors (DRs) on cancer cells is thus of fundamental importance to improve its action. We demonstrate here via molecular simulations that TRAIL can bind to its both agonistic DRs (ie, DR4 and DR5) with a preference for DR4. In this study, the role of a graphene nanoflake as a potential cargo for TRAIL is examined. Furthermore, both TRAIL self-assembling and TRAIL affinity when adsorbed on graphene are considered to enhance efficacy toward the targeted cancer cell. Our modelization results show that TRAIL can bind to DR4 and DR5 when transported by graphene nanoflake, as a proof of concept.


Assuntos
Portadores de Fármacos/metabolismo , Grafite/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Nanopartículas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
8.
Soft Matter ; 16(4): 1002-1010, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31853534

RESUMO

We report results from full atomistic molecular dynamics simulations on the properties of biomimetic nanopores. This latter result was obtained through the direct insertion of an α-hemolysin protein inside a hydrophobic solid-state nanopore. Upon translocation of different DNA strands, we demonstrate here that the theoretical system presents the same discrimination properties as the experimental one obtained previously. This opens an interesting way to promote the stability of a specific protein inside a solid nanopore to develop further biomimetic applications for DNA or protein sequencing.


Assuntos
DNA/química , Proteínas Hemolisinas/química , Polinucleotídeos/química , Sequência de Aminoácidos/genética , Biomimética , Proteínas Hemolisinas/genética , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Nanoporos/ultraestrutura
9.
J Am Chem Soc ; 141(36): 14230-14238, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31429556

RESUMO

For years, polypeptide formation has fascinated the scientific world because its understanding could lead to one of the possible explanations for the origin of life. Anodic oxidation of aliphatic α-amino acids in aqueous electrolytes can result either in their decomposition or in their polymerization into polypeptide. This behavior depends experimentally on both amino acid concentration and pH. The elucidation of the involved mechanisms remains a challenge because of the multitude of products which can be obtained. In this context, the electrochemical behavior of glycine and alanine on a biased platinum surface was examined at the nanoscale by quantum electrochemistry via the effective screening medium method. Several electrochemical systems with different concentrations and pH values have been explored. Simulations of the anodic oxidation of the amino acids have not only confirmed their electropolymerization and decomposition at high and low concentrations, respectively, but also have revealed unsuspected mechanisms at the origin of polypeptide formation. This sheds new light on electrochemistry of α-amino acids, on occurrence of polypeptides, and more generally on organic electrochemistry.


Assuntos
Aminoácidos/química , Técnicas Eletroquímicas , Peptídeos/síntese química , Teoria Quântica , Eletrodos , Oxirredução , Peptídeos/química
10.
Faraday Discuss ; 210(0): 69-85, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992218

RESUMO

We investigated ionic transport behavior in the case of uncharged conical nanopores. To do so, we designed conical nanopores using atomic layer deposition of Al2O3/ZnO nanolaminates and then coated these with trimethylsilane. The experimental results are supported by molecular dynamics simulations. The ionic transport reveals an unexpected behavior: (i) a current rectification and (ii) a constant conductance at low salt concentration which are usually reported for charged conical nanopore. To explain these results, we have considered different assumptions: (i) a default of functionalization, (ii) the adsorption anion and (iii) the slippage. The first one was refuted by the study of the poly-l-lysine transport through the nanopore. To verify the second assumption, we investigate the effect of pH on the current rectification and the molecular dynamics simulations. Finally our study demonstrates that the unexpected ionic transport is provided to a predominant effect of slippage due to the water organization at the solid/liquid interface.

11.
J Mol Recognit ; 29(9): 406-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26952193

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis of cancer cells when bound to its cognate receptors, TRAIL-R1 and TRAIL-R2 (DR4 and DR5), without being toxic to healthy cells. Nanovectorized TRAIL (abbreviated as NPT) is 10 to 20 times more efficient than one of the most potent soluble TRAIL used in preclinical studies (His-TRAIL). To determine whether differences in affinity may account for NPT superiority, a thermodynamic study was undertaken to evaluate NPT versus TRAIL binding affinity to DR5. Docking calculations showed that TRAIL in homotrimer configuration was more stable than in heterotrimer, because of the presence of one Zn ion in its structure. Indeed, TRAIL trimers can have head-to-tail orientations when Zn is missing. Altogether these data suggest that TRAIL homotrimer structures are predominant in solution and then are grafted on NPT. When docked to DR5, NPT carrying TRAIL homotrimer leads to a more stable complex than TRAIL monomer-based NPT. To comfort these observations, the extracellular domain of DR5 was immobilized on a chromatographic support using an "in situ" immobilization technique. The determination of the thermodynamic data (enthalpy ∆H° and entropy ∆S°*) of TRAIL and NPT binding to DR5 showed that the binding mechanism was pH dependent. The affinity of NPT to DR5 increased with pH, and the ionized energy was more important for NPT than for soluble TRAIL. Moreover, because of negative values of ∆H° and ∆S°* quantities, we demonstrated that van der Waals and hydrogen bonds governed the strong NPT-DR5 association for pH > 7.4 (as for TRAIL alone). Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Termodinâmica , Apoptose/fisiologia , Linhagem Celular Tumoral , Cromatografia de Afinidade , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/metabolismo , Ligação Proteica/fisiologia , Zinco/química
12.
J Membr Biol ; 249(3): 261-70, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26700625

RESUMO

Amphotericin B (AmB) is a well-known polyene which self-organizes into membrane cell in order to cause the cell death. Its specific action towards fungal cell is not fully understood but was proved to become from sterol composition. The mechanism was shown experimentally to require the formation of stable sterol/polyene couples which could then organize in a nanochannel. This would allow the leakage of ions responsible for the death of fungal cells, only. In this present study, we investigate the arrangement of AmB/sterols in biological membrane using molecular dynamic simulations in order to understand the role of the sterol structure on the antifungal action of the polyene. We show in particular that the nanochannels tend to close up when cell was composed with cholesterol (animal cell) due to strong interaction between amphotericin and sterol. On the other side, with ergosterol (fungal cell) the largest interactions between amphotericin and lipid membrane lead to the appearance of large hole that could favor the important leakage of ions and thus, the fungal cell death. This work appears as a good complement in the extensive studies linked to the understanding of the antifungal molecules in membrane cells.


Assuntos
Anfotericina B/química , Conformação Molecular , Simulação de Dinâmica Molecular , Esteróis/química , Membrana Celular/química , Ligação de Hidrogênio
13.
J Membr Biol ; 249(4): 493-501, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27010822

RESUMO

Carbon nanotubes (CNT) are currently used as a promising family of nanovectors able to deliver different types of therapeutic molecules. Several applications dealing with CNT used as drug nanocarriers have been developed since their ability to penetrate into the cells has been proved. CNT can thus load several active molecules to various cells. In this paper, we will use molecular dynamic simulation to describe theoretically the potential of CNT to transport and deliver DNA through the formation of protamine-DNA-CNT complex.


Assuntos
DNA , Nanopartículas , Protaminas , Adsorção , Animais , Transporte Biológico , DNA/química , Humanos , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Nanopartículas/química , Nanotubos de Carbono , Tamanho da Partícula , Protaminas/química
14.
Soft Matter ; 12(22): 4903-11, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27157717

RESUMO

A water molecule is the foundation of life and is the primary compound in every living system. While many of its properties are understood in a bulk solvent, its behavior in a small hydrophobic nanopore still raises fundamental questions. For instance, a wetting/dewetting transition in a hydrophobic solid-state or a polymer nanopore occurs stochastically and can only be prevented by external physical stimuli. Controlling these transitions would be a primary requirement to improve many applications. Some biological channels, such as gramicidin A (gA) proteins, show a high rate of water and ion diffusion in their central subnanochannel while their external surface is highly hydrophobic. The diameter of this channel is significantly smaller than the inner size of the lowest artificial nanopore in which water drying occurs (i.e. 1.4 nm). In this paper, we propose an innovative idea to generate nanopore wetting as a result of which the application of an external field is no longer required. In a nanopore, the drying or wetting of the inner walls occurs randomly (in experiments and in simulations). However, we have shown how the confinement of gA, in a dried hydrophobic nanopore, rapidly generates a stable wetting of the latter. We believe that this simple idea, based on biomimetism, could represent a real breakthrough that could help to improve and develop new nanoscale applications.


Assuntos
Biomimética , Nanoporos , Molhabilidade , Difusão , Interações Hidrofóbicas e Hidrofílicas
15.
Nano Lett ; 15(2): 891-5, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25584433

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) is a member of the tumor necrosis factor (TNF) superfamily. This type II transmembrane protein is able to bound specifically to cancer cell receptors (i.e., TRAIL-R1 (or DR4) and TRAIL-R2 (or DR5)) and to induce apoptosis without being toxic for healthy cells. Because membrane-bound TRAIL induces stronger receptor aggregation and apoptosis than soluble TRAIL, we proposed here to vectorize TRAIL using single-walled carbon nanotubes (SWCNTs) to mimic membrane TRAIL. Owing to their exceptional and revolutional properties, carbon nanotubes, especially SWCNTs, are used in a wide range of physical or, now, medical applications. Indeed due to their high mechanical resistance, their high flexibility and their hydrophobicity, SWCNTs are known to rapidly diffuse in an aqueous medium such as blood, opening the way of development of new drug nanovectors (or nanocarriers). Our TRAIL-based SWCNTs nanovectors proved to be more efficient than TRAIL alone death receptors in triggering cancer cell killing. These NPTs increased TRAIL pro-apoptotic potential by nearly 20-fold in different Human tumor cell lines including colorectal, nonsmall cell lung cancer, or hepatocarcinomas. We provide thus a proof-of-concept that TRAIL nanovector derivatives based on SWCNT may be useful to future nanomedicine therapies.


Assuntos
Nanotubos de Carbono , Neoplasias/patologia , Ligante Indutor de Apoptose Relacionado a TNF/química , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/química , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
16.
Phys Chem Chem Phys ; 17(44): 30057-64, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26498990

RESUMO

Anticancer drug transport is now becoming an important scientific challenge since it would allow localizing the drug release near the tumor cell, avoiding secondary medical effects. We present theoretical results, based on density functional theory and molecular dynamics simulations, which demonstrate the stability of functionalized single (10,10) boron nitride nanotubes (BNNTs) filled with anticancer molecule such as carboplatin (CPT). For this functionalized system we determine the dependence of the adsorption energy on the molecule displacement near the inner BNNTs surface, together with their local morphological and electrical changes and compare the values to the adsorption energy obtained on the outer surface. Quantum simulations show that the most stable physisorption state is located inside the nanotube, with no net charge transfer. This demonstrates that chemotherapeutic encapsulation is the most favorable way to transport drug molecules. The solvent effect and dispersion repulsion contributions are then taken into account using molecular dynamics simulations. Our results confirm that carboplatin therapeutic agents are not affected when they are adsorbed inside BNNTs by the surrounding water molecules.


Assuntos
Grafite/química , Iodetos/química , Modelos Teóricos , Adsorção , Temperatura
17.
Phys Chem Chem Phys ; 16(34): 18425-32, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25070038

RESUMO

Full DFT-D2 calculations were carried out to study the interactions between single wall (10,10) boron nitride nanotubes (BNNTs) and different molecules, such as azomethine (C2H5N) and an anticancer agent (Pt(IV) complex) linked to an amino-derivative chain. The geometry of the (10,10) BNNT-azomethine and the BNNT-amino derivative system was optimised by considering different molecular configurations on the inner and outer surfaces of the nanotube. Simulation results showed that the most stable physisorption state for both molecules was located inside the nanotube in a parallel configuration. We showed also that the molecular chemisorption was possible only when the azomethine was present above two adjacent B and N atoms of a hexagon. The attachment of an azomethine plus a subsequent drug did not perturb the cycloaddition process. Moreover, all theoretical results showed that the therapeutic agent complex was not affected when it was attached onto BNNTs.


Assuntos
Antineoplásicos/química , Compostos de Boro/química , Modelos Químicos , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Absorção Fisico-Química , Simulação por Computador , Modelos Moleculares , Conformação Molecular , Tamanho da Partícula , Teoria Quântica
18.
Mol Membr Biol ; 30(5-6): 338-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23964686

RESUMO

Transmembrane translocation of C60 fullerenes functionalized by the single amino-derivative in neutral and charged forms was studies by extensive all-atom molecular dynamics simulations. It is shown that these complexes exhibit very strong affinity to the membrane core, but their spontaneous translocation through the membrane is not possible at practical time scale. In contrast, free amino derivatives translocate through the membrane much easier than their complexes with fullerenes, but do not have pronounced affinity to the membrane interior. Our results suggest that monofunctionalized C60 could be extremely efficient membrane targeting agents, which facilitate accumulation of the water-soluble compounds in the hydrophobic core of lipid bilayer.


Assuntos
Fulerenos/química , Bicamadas Lipídicas/química , Membranas/química , Simulação de Dinâmica Molecular , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Membranas/ultraestrutura , Água/química
19.
Nanomaterials (Basel) ; 14(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38202572

RESUMO

Nanofluidics has a very promising future owing to its numerous applications in many domains. It remains, however, very difficult to understand the basic physico-chemical principles that control the behavior of solvents confined in nanometric channels. Here, water and ion transport in carbon nanotubes is investigated using classical force field molecular dynamics simulations. By combining one single walled carbon nanotube (uniformly charged or not) with two perforated graphene sheets, we mimic single nanopore devices similar to experimental ones. The graphitic edges delimit two reservoirs of water and ions in the simulation cell from which a voltage is imposed through the application of an external electric field. By analyzing the evolution of the electrolyte conductivity, the role of the carbon nanotube geometric parameters (radius and chirality) and of the functionalization of the carbon nanotube entrances with OH or COO- groups is investigated for different concentrations of group functions.

20.
Phys Chem Chem Phys ; 15(45): 19601-7, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23965826

RESUMO

Biological ion channels present unique ionic properties. They can be highly permeable to ions, while selecting only one type of ions, without external energy supply. An important research field has been developed to transfer these properties to solid state nanoporous membranes in order to develop artificial biomimetic nanofilters. One of the promising ways to develop biomimetic structures is based on the direct insertion of the gramicidin A, i.e. an ionic channel, inside a nanopore. Experiments have recently proved the feasibility of such a hybrid membrane with very interesting results regarding the ionic selectivity. Here, we propose to interpret these experiments using theoretical molecular dynamic simulations which allow us to analyze more profoundly the structures of the proteins confined inside the nanopore and the relation between their conformation and the observed ionic properties.


Assuntos
Biomimética , Nanoporos , Potássio/metabolismo , Difusão , Gramicidina/química , Gramicidina/metabolismo , Membranas Artificiais , Simulação de Dinâmica Molecular , Conformação Proteica , Eletricidade Estática , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA