Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 152: 105289, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33577922

RESUMO

Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.


Assuntos
Colesterol/biossíntese , Medula Espinal/patologia , Ataxias Espinocerebelares/patologia , Proteinopatias TDP-43/patologia , Animais , Ataxina-2 , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Camundongos , Medula Espinal/metabolismo , Ataxias Espinocerebelares/metabolismo , Proteinopatias TDP-43/metabolismo
2.
Ann Neurol ; 82(3): 444-456, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28856708

RESUMO

OBJECTIVE: Spasticity occurs in a wide range of neurological diseases, including neurodegenerative diseases, after trauma, and after stroke, and is characterized by increased reflexes leading to muscle hypertonia. Spasticity is a painful symptom and can severely restrict everyday life, but might also participate in maintaining a low level of motor function in severely impaired patients. Constitutive activity of the serotonin receptors 5-HT2B/C is required for the development of spasticity after spinal cord injury and during amyotrophic lateral sclerosis (ALS). We sought here to provide direct evidence for a role of brainstem serotonin neurons in spasticity. METHODS: SOD1(G37R) mice expressing a conditional allele of an ALS-linked SOD1 mutation were crossed with Tph2-Cre mice expressing Cre in serotonergic neurons. Measurement of long-lasting reflex using electromyography, behavioral follow-up, and histological techniques was used to characterize spasticity and motor phenotype. RESULTS: Deleting mutant SOD1 expression selectively in brainstem serotonin neurons was sufficient to rescue loss of TPH2 immunoreactivity and largely preserve serotonin innervation of motor neurons in the spinal cord. Furthermore, this abrogated constitutive activity of 5-HT2B/C receptors and abolished spasticity in end-stage mice. Consistent with spasticity mitigating motor symptoms, selective deletion worsened motor function and accelerated the onset of paralysis. INTERPRETATION: Degeneration of serotonin neurons is necessary to trigger spasticity through the 5-HT2B/C receptor. The wide range of drugs targeting the serotonergic system could be useful to treat spasticity in neurological diseases. Ann Neurol 2017;82:444-456.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Espasticidade Muscular/patologia , Degeneração Neural/patologia , Neurônios Serotoninérgicos/patologia , Alelos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Espasticidade Muscular/fisiopatologia , Mutação , Degeneração Neural/fisiopatologia , Superóxido Dismutase-1/genética
3.
Prog Neurobiol ; 227: 102483, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327984

RESUMO

Cytoplasmic mislocalization of the nuclear Fused in Sarcoma (FUS) protein is associated to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS accumulation is recapitulated in the frontal cortex and spinal cord of heterozygous Fus∆NLS/+ mice. Yet, the mechanisms linking FUS mislocalization to hippocampal function and memory formation are still not characterized. Herein, we show that in these mice, the hippocampus paradoxically displays nuclear FUS accumulation. Multi-omic analyses showed that FUS binds to a set of genes characterized by the presence of an ETS/ELK-binding motifs, and involved in RNA metabolism, transcription, ribosome/mitochondria and chromatin organization. Importantly, hippocampal nuclei showed a decompaction of the neuronal chromatin at highly expressed genes and an inappropriate transcriptomic response was observed after spatial training of Fus∆NLS/+ mice. Furthermore, these mice lacked precision in a hippocampal-dependent spatial memory task and displayed decreased dendritic spine density. These studies shows that mutated FUS affects epigenetic regulation of the chromatin landscape in hippocampal neurons, which could participate in FTD/ALS pathogenic events. These data call for further investigation in the neurological phenotype of FUS-related diseases and open therapeutic strategies towards epigenetic drugs.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Cromatina/metabolismo , Epigênese Genética , Demência Frontotemporal/genética , Hipocampo/metabolismo , Mutação , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
4.
Mol Neurodegener ; 16(1): 61, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488813

RESUMO

Mutations in FUS, an RNA-binding protein involved in multiple steps of RNA metabolism, are associated with the most severe forms of amyotrophic lateral sclerosis (ALS). Accumulation of cytoplasmic FUS is likely to be a major culprit in the toxicity of FUS mutations. Thus, preventing cytoplasmic mislocalization of the FUS protein may represent a valuable therapeutic strategy. FUS binds to its own pre-mRNA creating an autoregulatory loop efficiently buffering FUS excess through multiple proposed mechanisms including retention of introns 6 and/or 7. Here, we introduced a wild-type FUS gene allele, retaining all intronic sequences, in mice whose heterozygous or homozygous expression of a cytoplasmically retained FUS protein (Fus∆NLS) was previously shown to provoke ALS-like disease or postnatal lethality, respectively. Wild-type FUS completely rescued the early lethality caused by the two Fus∆NLS alleles, and improved the age-dependent motor deficits and reduced lifespan caused by heterozygous expression of mutant FUS∆NLS. Mechanistically, wild-type FUS decreased the load of cytoplasmic FUS, increased retention of introns 6 and 7 in the endogenous mouse Fus mRNA, and decreased expression of the mutant mRNA. Thus, the wild-type FUS allele activates the homeostatic autoregulatory loop, maintaining constant FUS levels and decreasing the mutant protein in the cytoplasm. These results provide proof of concept that an autoregulatory competent wild-type FUS expression could protect against this devastating, currently intractable, neurodegenerative disease.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Proteína FUS de Ligação a RNA/fisiologia , Alelos , Esclerose Lateral Amiotrófica/genética , Animais , Citoplasma/metabolismo , Demência Frontotemporal/genética , Genes Letais , Teste de Complementação Genética , Humanos , Íntrons/genética , Camundongos , Camundongos Transgênicos , Mutação , Ligação Proteica , Precursores de RNA/metabolismo , Proteína FUS de Ligação a RNA/deficiência , Proteína FUS de Ligação a RNA/genética , Proteínas Recombinantes/metabolismo , Transgenes
5.
Nat Commun ; 12(1): 3028, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021132

RESUMO

Gene mutations causing cytoplasmic mislocalization of the RNA-binding protein FUS lead to severe forms of amyotrophic lateral sclerosis (ALS). Cytoplasmic accumulation of FUS is also observed in other diseases, with unknown consequences. Here, we show that cytoplasmic mislocalization of FUS drives behavioral abnormalities in knock-in mice, including locomotor hyperactivity and alterations in social interactions, in the absence of widespread neuronal loss. Mechanistically, we identified a progressive increase in neuronal activity in the frontal cortex of Fus knock-in mice in vivo, associated with altered synaptic gene expression. Synaptic ultrastructural and morphological defects were more pronounced in inhibitory than excitatory synapses and associated with increased synaptosomal levels of FUS and its RNA targets. Thus, cytoplasmic FUS triggers synaptic deficits, which is leading to increased neuronal activity in frontal cortex and causing related behavioral phenotypes. These results indicate that FUS mislocalization may trigger deleterious phenotypes beyond motor neuron impairment in ALS, likely relevant also for other neurodegenerative diseases characterized by FUS mislocalization.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Citoplasma/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Sinapses/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Feminino , Expressão Gênica , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/metabolismo , Mutação , Fenótipo , Transmissão Sináptica/fisiologia
6.
Cell Stress ; 4(4): 76-91, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32292882

RESUMO

A number of neuromuscular and muscular diseases, including amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA) and several myopathies, are associated to mutations in related RNA-binding proteins (RBPs), including TDP-43, FUS, MATR3 or hnRNPA1/B2. These proteins harbor similar modular primary sequence with RNA binding motifs and low complexity domains, that enables them to phase separate and create liquid microdomains. These RBPs have been shown to critically regulate multiple events of RNA lifecycle, including transcriptional events, splicing and RNA trafficking and sequestration. Here, we review the roles of these disease-related RBPs in muscle and motor neurons, and how their dysfunction in these cell types might contribute to disease.

7.
Nat Neurosci ; 22(11): 1793-1805, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591561

RESUMO

Neuromuscular junction (NMJ) disruption is an early pathogenic event in amyotrophic lateral sclerosis (ALS). Yet, direct links between NMJ pathways and ALS-associated genes such as FUS, whose heterozygous mutations cause aggressive forms of ALS, remain elusive. In a knock-in Fus-ALS mouse model, we identified postsynaptic NMJ defects in newborn homozygous mutants that were attributable to mutant FUS toxicity in skeletal muscle. Adult heterozygous knock-in mice displayed smaller neuromuscular endplates that denervated before motor neuron loss, which is consistent with 'dying-back' neuronopathy. FUS was enriched in subsynaptic myonuclei, and this innervation-dependent enrichment was distorted in FUS-ALS. Mechanistically, FUS collaborates with the ETS transcription factor ERM to stimulate transcription of acetylcholine receptor genes. Co-cultures of induced pluripotent stem cell-derived motor neurons and myotubes from patients with FUS-ALS revealed endplate maturation defects due to intrinsic FUS toxicity in both motor neurons and myotubes. Thus, FUS regulates acetylcholine receptor gene expression in subsynaptic myonuclei, and muscle-intrinsic toxicity of ALS mutant FUS may contribute to dying-back motor neuronopathy.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Degeneração Neural/fisiopatologia , Junção Neuromuscular/metabolismo , Proteína FUS de Ligação a RNA/fisiologia , Adulto , Esclerose Lateral Amiotrófica/patologia , Animais , Células Cultivadas , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Neurônios Motores/patologia , Fibras Musculares Esqueléticas/patologia , Junção Neuromuscular/patologia , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Receptores Colinérgicos/metabolismo , Adulto Jovem
8.
Brain Pathol ; 26(2): 227-36, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780251

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease primarily characterized by upper and lower motor neuron degeneration, muscle wasting and paralysis. It is increasingly accepted that the pathological process leading to ALS is the result of multiple disease mechanisms that operate within motor neurons and other cell types both inside and outside the central nervous system. The implication of skeletal muscle has been the subject of a number of studies conducted on patients and related animal models. In this review, we describe the features of ALS muscle pathology and discuss on the contribution of muscle to the pathological process. We also give an overview of the therapeutic strategies proposed to alleviate muscle pathology or to deliver curative agents to motor neurons. ALS muscle mainly suffers from oxidative stress, mitochondrial dysfunction and bioenergetic disturbances. However, the way by which the disease affects different types of myofibers depends on their contractile and metabolic features. Although the implication of muscle in nourishing the degenerative process is still debated, there is compelling evidence suggesting that it may play a critical role. Detailed understanding of the muscle pathology in ALS could, therefore, lead to the identification of new therapeutic targets.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Humanos , Músculo Esquelético/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA