Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 50(6): 1792-1810, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36757432

RESUMO

PURPOSE: Knowledge about pancreatic cancer (PC) biology has been growing rapidly in recent decades. Nevertheless, the survival of PC patients has not greatly improved. The development of a novel methodology suitable for deep investigation of the nature of PC tumors is of great importance. Molecular imaging techniques, such as Fourier transform infrared (FTIR) spectroscopy and Raman hyperspectral mapping (RHM) combined with advanced multivariate data analysis, were useful in studying the biochemical composition of PC tissue. METHODS: Here, we evaluated the potential of molecular imaging in differentiating three groups of PC tumors, which originate from different precursor lesions. Specifically, we comprehensively investigated adenocarcinomas (ACs): conventional ductal AC, intraductal papillary mucinous carcinoma, and ampulla of Vater AC. FTIR microspectroscopy and RHM maps of 24 PC tissue slides were obtained, and comprehensive advanced statistical analyses, such as hierarchical clustering and nonnegative matrix factorization, were performed on a total of 211,355 Raman spectra. Additionally, we employed deep learning technology for the same task of PC subtyping to enable automation. The so-called convolutional neural network (CNN) was trained to recognize spectra specific to each PC group and then employed to generate CNN-prediction-based tissue maps. To identify the DNA methylation spectral markers, we used differently methylated, isolated DNA and compared the observed spectral differences with the results obtained from cellular nuclei regions of PC tissues. RESULTS: The results showed significant differences among cancer tissues of the studied PC groups. The main findings are the varying content of ß-sheet-rich proteins within the PC cells and alterations in the relative DNA methylation level. Our CNN model efficiently differentiated PC groups with 94% accuracy. The usage of CNN in the classification task did not require Raman spectral data preprocessing and eliminated the need for extensive knowledge of statistical methodologies. CONCLUSIONS: Molecular spectroscopy combined with CNN technology is a powerful tool for PC detection and subtyping. The molecular fingerprint of DNA methylation and ß-sheet cytoplasmic proteins established by our results is different for the main PC groups and allowed the subtyping of pancreatic tumors, which can improve patient management and increase their survival. Our observations are of key importance in understanding the variability of PC and allow translation of the methodology into clinical practice by utilizing liquid biopsy testing.


Assuntos
Metilação de DNA , Neoplasias Pancreáticas , Humanos , Conformação Proteica em Folha beta , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Análise Espectral , Neoplasias Pancreáticas
2.
Analyst ; 148(15): 3584-3593, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37403827

RESUMO

Infrared scattering-type scanning near-field optical microscopy (IR s-SNOM) and imaging is here exploited together with attenuated total reflection (ATR) IR imaging and scanning electron microscopy (SEM) to depict the chemical composition of fibers in hybrid electrospun meshes. The focus is on a recently developed bio-hybrid material for vascular tissue engineering applications, named Silkothane®, obtained in the form of nanofibrous matrices from the processing of a silk fibroin-polyurethane (SFPU) blend via electrospinning. Morphology and chemistry of single fibers, at both surface and subsurface level, have been successfully characterized with nanoscale resolution, taking advantage of the IR s-SNOM capability to portray the nanoscale depth profile of this modern material working at diverse harmonics of the signal. The applied methodology allowed to describe the superficial characteristics of the mesh up to a depth of about 100 nm, showing that SF and PU do not tend to co-aggregate to form hybrid fibers, at least at the length scale of hundreds of nanometers, and that subdomains other than the fibrillar ones can be present. More generally, in the present contribution, the depth profiling capabilities of IR s-SNOM, so far theoretically predicted and experimentally proven only on model systems, have been corroborated on a real material in its natural conditions with respect to production, opening the room for the exploitation of IR s-SNOM as valuable technique to support the production and the engineering of nanostructured materials by the precise understanding of their chemistry at the interface with the environment.

3.
Biophys J ; 113(8): 1685-1696, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045863

RESUMO

The analysis of the α-synuclein (aS) aggregation process, which is involved in Parkinson's disease etiopathogenesis, and of the structural feature of the resulting amyloid fibrils may shed light on the relationship between the structure of aS aggregates and their toxicity. This may be considered a paradigm of the ground work needed to tackle the molecular basis of all the protein-aggregation-related diseases. With this aim, we used chemical and physical dissociation methods to explore the structural organization of wild-type aS fibrils. High pressure (in the kbar range) and alkaline pH were used to disassemble fibrils to collect information on the hierarchic pathway by which distinct ß-sheets sequentially unfold using the unique possibility offered by high-pressure Fourier transform infrared spectroscopy. The results point toward the formation of kinetic traps in the energy landscape of aS fibril disassembly and the presence of transient partially folded species during the process. Since we found that the dissociation of wild-type aS fibrils by high pressure is reversible upon pressure release, the disassembled molecules likely retain structural information that favors fibril reformation. To deconstruct the role of the different regions of aS sequence in this process, we measured the high-pressure dissociation of amyloids formed by covalent chimeric dimers of aS (syn-syn) and by the aS deletion mutant that lacks the C-terminus, i.e., aS (1-99). The results allowed us to single out the role of dimerization and that of the C-terminus in the complete maturation of fibrillar aS.


Assuntos
Amiloide/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/química , Dicroísmo Circular , Escherichia coli , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Mutação , Pressão , Conformação Proteica em Folha beta , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , alfa-Sinucleína/química
4.
Arch Biochem Biophys ; 627: 46-55, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624352

RESUMO

α-synuclein amyloid fibrils are found in surviving neurons of Parkinson's disease affected patients, but the role they play in the disease development is still under debate. A growing number of evidences points to soluble oligomers as the major cytotoxic species, while insoluble fibrillar aggregates could even play a protection role. In this work, we investigate α-synuclein fibrils dissociation induced at high pressure by means of Small Angle X-ray Scattering and Fourier Transform Infrared Spectroscopy. Fibrils were produced from wild type α-synuclein and two familial mutants, A30P and A53T. Our results enlighten the different reversible nature of α-synuclein fibrils fragmentation at high pressure and suggest water excluded volumes presence in the fibrils core. Wild type and A30P species stabilized at high pressure are highly amyloidogenic and quickly re-associate into fibrils upon decompression, while A53T species shows a partial reversibility of the process likely due to the presence of an intermediate oligomeric state stabilized at high pressure. The amyloid fibrils dissociation process is here suggested to be associated to a negative activation volume, supporting the notion that α-synuclein fibrils are in a high-volume and high-compressibility state and hinting at the presence of a hydration-mediated activated state from which dissociation occurs.


Assuntos
Amiloide/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/química , Amiloide/genética , Humanos , Doença de Parkinson/genética , Mutação Puntual , Pressão , Espalhamento a Baixo Ângulo , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , alfa-Sinucleína/química , alfa-Sinucleína/genética
5.
ACS Nano ; 18(4): 3011-3022, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38235673

RESUMO

The divergent supramolecular behavior of a series of tripeptide stereoisomers was elucidated through spectroscopic, microscopic, crystallographic, and computational techniques. Only two epimers were able to effectively self-organize into amphipathic structures, leading to supramolecular hydrogels or crystals, respectively. Despite the similarity between the two peptides' turn conformations, stereoconfiguration led to different abilities to engage in intramolecular hydrogen bonding. Self-assembly further shifted the pKa value of the C-terminal side chain. As a result, across the pH range 4-6, only one epimer predominated sufficiently as a zwitterion to reach the critical molar fraction, allowing gelation. By contrast, the differing pKa values and higher dipole moment of the other epimer favored crystallization. The four stereoisomers were further tested for gold nanoparticle (AuNP) formation, with the supramolecular hydrogel being the key to control and stabilize AuNPs, yielding a nanocomposite that catalyzed the photodegradation of a dye. Importantly, the AuNP formation occurred without the use of reductants other than the peptide, and the redox chemistry was investigated by LC-MS, NMR, and infrared scattering-type near field optical microscopy (IR s-SNOM). This study provides important insights for the rational design of simple peptides as minimalistic and green building blocks for functional nanocomposites.


Assuntos
Hidrogéis , Nanopartículas Metálicas , Hidrogéis/química , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 2): 122087, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36417818

RESUMO

Core-shell nanoparticles have been extensively researched, particularly as multimodal for medical applications. Scientists are interested in combining the optical properties of nano-plasmonic nanoparticles with the magnetic properties of super-paramagnetic nanoparticles. This combination is very important because it reduces metal toxicity and improves nanoparticle targeting. Tuning the shape and size of the nanoparticles significantly reflects their properties and applications. In previous study, we assessed the SPION@Ag@chitosan core-shell nanocomposite (γFe2O3@Ag@Cs NCs) toxicity both in vitro and preclinically in vivo, using traditional toxicological assessment and biochemical parameters. The results showed that up to100 ug/kg is a safe NP dose as evaluated by pathological and biochemical parameters. The aim of the present study was to gain insight into the effect of γFe2O3@Ag@Cs NC at sub-cytotoxic concentrations (100ug/ml) on the biochemical profile of immune organs (inguinal, axillary, spleen and thymus) by combining the investigation of cytokine secretion to ex vivo FTIR spectroscopy. The four immune organs were treated with 100 ug/kg NC and the time dependence of the effects produced by the treatment was analyzed. The Data shows that the used core-shell NC with the indicate dose have a stimulatory effect on the immune system, as evidenced by an increase in antibody secretion (IgG and IgM), lipid, nucleic acid, and protein synthesis after uptake time which depends on the specific immune organ.


Assuntos
Quitosana , Nanocompostos , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia , Adjuvantes de Vacinas
7.
Biochim Biophys Acta Gen Subj ; 1867(3): 130291, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36529242

RESUMO

BACKGROUND: The use of ionizing radiations in radiotherapy is an effective and very common cancer treatment after surgery. Although ionizing-radiation DNA damages are extensively investigated, little is known about their effects on the other nuclear components, since their variations when studied in whole cells can be difficult to decouple from those of the cytoplasmatic structures. The organization of nuclear components plays a functional role since they are directly involved in some of the nuclear response to chemical or physical stimuli. For this reason, studying the X-ray effects on nuclear components is a crucial step in radiobiology. MATERIALS AND METHODS: We have used Atomic Force Microscopy (AFM) and micro-FTIR to examine the biomechanical and biochemical properties of hydrated fixed nuclei isolated from neuroblastoma (SH-SY5Y) cells irradiated by 2, 4, 6 and 8 Gy X-ray doses. RESULTS: The experimental results have shown that, already at 2 Gy irradiation dose, the nuclei exhibit not only a DNA damage, but also relevant alterations of lipid saturation, protein secondary structure arrangement and a significant decrease in nuclear stiffness, which indicate a remarkable chromatin decondensation. CONCLUSIONS AND GENERAL SIGNIFICANCE: The present work demonstrates that a multi-technique approach, able to disclose multiple features, can be helpful to achieve a comprehensive picture of the X-ray irradiation effects of the nuclear components and distinguish them from those occurring at the level of cytoplasm.


Assuntos
Neuroblastoma , Humanos , Raios X , Núcleo Celular , Radiação Ionizante , Cromatina
8.
Nanoscale ; 15(39): 16002-16009, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37779505

RESUMO

Metamaterials are attracting increasing attention due to their ability to support novel and engineerable electromagnetic functionalities. In this paper, we investigate one of these functionalities, i.e. the extraordinary optical transmittance (EOT) effect based on silicon nitride (Si3N4) membranes patterned with a periodic lattice of micrometric holes. Here, the coupling between the incoming electromagnetic wave and a Si3N4 optical phonon located around 900 cm-1 triggers an increase of the transmitted infrared intensity in an otherwise opaque spectral region. Different hole sizes are investigated suggesting that the mediating mechanism responsible for this phenomenon is the excitation of a phonon-polariton mode. The electric field distribution around the holes is further investigated by numerical simulations and nano-IR measurements based on a Scattering-Scanning Near Field Microscope (s-SNOM) technique, confirming the phonon-polariton origin of the EOT effect. Being membrane technologies at the core of a broad range of applications, the confinement of IR radiation at the membrane surface provides this technology platform with a novel light-matter interaction functionality.

9.
Sci Rep ; 13(1): 15855, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740075

RESUMO

The chemistry and mineralogy of slabs subducted into lower mantle control slab rheology and impact the deep volatile cycle. It is known that the metamorphism of little-altered oceanic crust results in eclogite rocks with subequal proportions of garnet and clinopyroxene. With increasing pressure, these minerals react to stabilize pyrope-rich tetragonal majoritic garnet. However, some eclogites contain higher proportions of omphacitic clinopyroxene, caused by Na- and Si-rich metasomatism on the ocean floor or during subduction. The mineralogy of such eclogites is expected to evolve differently. Here, we discuss the results of the crystallization products of omphacitic glass at ~ 18 and ~ 25 GPa and 1000 °C to simulate P-T regimes of cold subduction. The full characterization of the recovered samples indicates evidence of crystallization of Na-, Si-rich cubic instead of tetragonal majorite. This cubic majorite can incorporate large amounts of ferric iron, promoting redox reactions with surrounding volatile-bearing fluids and, ultimately, diamond formation. In addition, the occurrence of cubic majorite in the slab would affect the local density, favoring the continued buoyancy of the slab as previously proposed by seismic observations. Attention must be paid to omphacitic inclusions in sublithospheric diamonds as these might have experienced back-transformation from the HP isochemical cubic phase.

10.
Adv Sci (Weinh) ; 10(26): e2303781, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37409444

RESUMO

The manipulation of carbon nitride (CN) structures is one main avenue to enhance the activity of CN-based photocatalysts. Increasing the efficiency of photocatalytic heterogeneous materials is a critical step toward the realistic implementation of sustainable schemes for organic synthesis. However, limited knowledge of the structure/activity relationship in relation to subtle structural variations prevents a fully rational design of new photocatalytic materials, limiting practical applications. Here, the CN structure is engineered by means of a microwave treatment, and the structure of the material is shaped around its suitable functionality for Ni dual photocatalysis, with a resulting boosting of the reaction efficiency toward many CX (X = N, S, O) couplings. The combination of advanced characterization techniques and first-principle simulations reveals that this enhanced reactivity is due to the formation of carbon vacancies that evolve into triazole and imine N species able to suitably bind Ni complexes and harness highly efficient dual catalysis. The cost-effective microwave treatment proposed here appears as a versatile and sustainable approach to the design of CN-based photocatalysts for a wide range of industrially relevant organic synthetic reactions.

11.
ACS Appl Bio Mater ; 4(2): 1876-1887, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014457

RESUMO

De novo designed protein supramolecular structures are nowadays attracting much interest as highly performing biomaterials. While a clear advantage is provided by the intrinsic biocompatibility and biodegradability of protein and peptide building blocks, developing sustainable and green bottom up approaches for finely tuning the material properties still remains a challenge. Here, we present an experimental study on the formation of protein microparticles in the form of particulates from the protein α-lactalbumin using bulk mixing in water solution and high temperature. Once formed, the structure and stability of these spherical protein condensates change upon further thermal incubation while the size of aggregates does not significantly increase. Combining advanced microscopy and spectroscopy methods, we prove that this process, named maturation, is characterized by a gradual increase of amyloid-like structure in protein particulates, an enhancement in surface roughness and in molecular compactness, providing a higher stability and resistance of the structure in acidic environments. When dissolved at pH 2, early stage particulates disassemble into a homogeneous population of small oligomers, while the late stage particulates remain unaffected. Particulates at the intermediate stage of maturation partially disassemble into a heterogeneous population of fragments. Importantly, differently matured microparticles show different features when loading a model lipophilic molecule. Our findings suggest conformational transitions localized at the interface as a key step in the maturation of amyloid protein condensates, promoting this phenomenon as an intrinsic knob to tailor the properties of protein microparticles formed via bulk mixing in aqueous solution. This provides a simple and sustainable platform for the design and realization of protein microparticles for tailored applications.


Assuntos
Materiais Biocompatíveis/química , Lactalbumina/química , Concentração de Íons de Hidrogênio , Teste de Materiais , Tamanho da Partícula , Propriedades de Superfície
12.
Nanomaterials (Basel) ; 11(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923331

RESUMO

The growing demand for innovative means in biomedical, therapeutic and diagnostic sciences has led to the development of nanomedicine. In this context, naturally occurring tubular nanostructures composed of rolled sheets of alumino-silicates, known as halloysite nanotubes, have found wide application. Halloysite nanotubes indeed have surface properties that favor the selective loading of biomolecules. Here, we present the first, to our knowledge, structural study of DNA-decorated halloysite nanotubes, carried out with nanometric spatially-resolved infrared spectroscopy. Single nanotube absorption measurements indicate a partial covering of halloysite by DNA molecules, which show significant structural modifications taking place upon loading. The present study highlights the constraints for the use of nanostructured clays as DNA carriers and demonstrates the power of super-resolved infrared spectroscopy as an effective and versatile tool for the evaluation of immobilization processes in the context of drug delivery and gene transfer.

13.
J Phys Chem B ; 122(12): 3101-3112, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29488762

RESUMO

Protein self-assembly into amyloid fibrils or highly hierarchical superstructures is closely linked to neurodegenerative pathologies as Alzheimer's and Parkinson's diseases. Moreover, protein assemblies also emerged as building blocks for bioinspired nanostructured materials. In both the above mentioned fields, the main challenge is to control the growth and properties of the final protein structure. This relies on a more fundamental understanding of how interactions between proteins can determine structures and functions of biomolecular aggregates. Here, we identify a striking effect of the hydration of the single human insulin molecule and solvent properties in controlling hydrophobicity/hydrophilicity, structures, and morphologies of a superstructure named spherulite, observed in connection to Alzheimer's disease. Depending on the presence of ethanol, such structures can incorporate fluorescent molecules with different physicochemical features and span a range of mechanical properties and morphologies. A theoretical model providing a thorough comprehension of the experimental data is developed, highlighting a direct connection between the intimate physical protein-protein interactions, the growth, and the properties of the self-assembled superstructures. Our findings indicate structural variability as a general property for amyloid-like aggregates and not limited to fibrils. This knowledge is pivotal not only for developing effective strategies against pathological amyloids but also for providing a platform to design highly tunable biomaterials, alternative to elongated protein fibrils.


Assuntos
Amiloide/síntese química , Etanol/química , Insulinas/síntese química , Amiloide/química , Dicroísmo Circular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Insulinas/química , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Difração de Nêutrons , Imagem Óptica , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Biosci Rep ; 35(2)2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25772301

RESUMO

Accumulating evidence indicates that RNA metabolism components assemble into supramolecular cellular structures to mediate functional compartmentalization within the cytoplasmic membrane of the bacterial cell. This cellular compartmentalization could play important roles in the processes of RNA degradation and maturation. These components include Hfq, the RNA chaperone protein, which is involved in the post-transcriptional control of protein synthesis mainly by the virtue of its interactions with several small regulatory ncRNAs (sRNA). The Escherichia coli Hfq is structurally organized into two domains. An N-terminal domain that folds as strongly bent ß-sheets within individual protomers to assemble into a typical toroidal hexameric ring. A C-terminal flexible domain that encompasses approximately one-third of the protein seems intrinsically unstructured. RNA-binding function of Hfq mainly lies within its N-terminal core, whereas the function of the flexible domain remains controversial and largely unknown. In the present study, we demonstrate that the Hfq-C-terminal region (CTR) has an intrinsic property to self-assemble into long amyloid-like fibrillar structures in vitro. We show that normal localization of Hfq within membrane-associated coiled structures in vivo requires this C-terminal domain. This finding establishes for the first time a function for the hitherto puzzling CTR, with a plausible central role in RNA transactions.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Fator Proteico 1 do Hospedeiro/química , RNA Bacteriano/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
15.
Biophys Chem ; 199: 17-24, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25776525

RESUMO

Amyloid and amyloid-like fibrils are a general class of protein aggregates and represent a central topic in life sciences for their involvement in several neurodegenerative disorders and their unique mechanical and supramolecular morphological properties. Both their biological role and their physical properties, including their high mechanical stability and thermodynamic inertia, are related to the structural arrangement of proteins in the aggregates at molecular level. Significant variations may exist in the supramolecular organization of the commonly termed cross-ß structure that constitutes the amyloid core. In this context, a fine knowledge of the structural details in fibrils may give significant information on the assembly process and on possible ways of tuning or inhibiting it. Here we propose a simple method based on the combined use of Fourier transform infrared spectroscopy and Fourier transform Raman spectroscopy to accurately reveal structural details in the fibrillar aggregates, side-chain exposure and intermolecular interactions. Interestingly, coupled analysis of mid-infrared spectra reveals antiparallel ß-sheet orientation in ConA fibrils. We also report the comparison between THz absorption spectra of Concanavalin A in its native and fibrillar state at different hydration levels, allowing obtaining corroboration of peaks assignation in this range and information on the effect of amyloid supramolecular arrangement on the network dynamics of hydration water.


Assuntos
Amiloide/química , Concanavalina A/química , Humanos , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA