Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 26(7): 2175-2189, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755728

RESUMO

Changed fire regimes have led to declines of fire-regime-adapted species and loss of biodiversity globally. Fire affects population processes of growth, reproduction, and dispersal in different ways, but there is little guidance about the best fire regime(s) to maintain species population processes in fire-prone ecosystems. We use a process-based approach to determine the best range of fire intervals for keystone plant species in a highly modified Mediterranean ecosystem in southwestern Australia where current fire regimes vary. In highly fragmented areas, fires are few due to limited ignitions and active suppression of wildfire on private land, while in highly connected protected areas fires are frequent and extensive. Using matrix population models, we predict population growth of seven Banksia species under different environmental conditions and patch connectivity, and evaluate the sensitivity of species survival to different fire management strategies and burning intervals. We discover that contrasting, complementary patterns of species life-histories with time since fire result in no single best fire regime. All strategies result in the local patch extinction of at least one species. A small number of burning strategies secure complementary species sets depending on connectivity and post-fire growing conditions. A strategy of no fire always leads to fewer species persisting than prescribed fire or random wildfire, while too-frequent or too-rare burning regimes lead to the possible local extinction of all species. In low landscape connectivity, we find a smaller range of suitable fire intervals, and strategies of prescribed or random burning result in a lower number of species with positive growth rates after 100 years on average compared with burning high connectivity patches. Prescribed fire may reduce or increase extinction risk when applied in combination with wildfire depending on patch connectivity. Poor growing conditions result in a significantly reduced number of species exhibiting positive growth rates after 100 years of management. By exploring the consequences of managing fire, we are able to identify which species are likely to disappear under a given fire regime. Identifying the appropriate complementarity of fire intervals, and their species-specific as well as community-level consequences, is crucial to reduce local extinctions of species in fragmented fire-prone landscapes.


Assuntos
Conservação dos Recursos Naturais/métodos , Plantas/classificação , Incêndios Florestais , Animais , Austrália , Ecossistema , Monitoramento Ambiental , Modelos Biológicos , Dinâmica Populacional , Sementes , Fatores de Tempo
2.
Glob Chang Biol ; 21(11): 3917-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26179346

RESUMO

Climate change is a major threat to global biodiversity, and its impacts can act synergistically to heighten the severity of other threats. Most research on projecting species range shifts under climate change has not been translated to informing priority management strategies on the ground. We develop a prioritization framework to assess strategies for managing threats to biodiversity under climate change and apply it to the management of invasive animal species across one-sixth of the Australian continent, the Lake Eyre Basin. We collected information from key stakeholders and experts on the impacts of invasive animals on 148 of the region's most threatened species and 11 potential strategies. Assisted by models of current distributions of threatened species and their projected distributions, experts estimated the cost, feasibility, and potential benefits of each strategy for improving the persistence of threatened species with and without climate change. We discover that the relative cost-effectiveness of invasive animal control strategies is robust to climate change, with the management of feral pigs being the highest priority for conserving threatened species overall. Complementary sets of strategies to protect as many threatened species as possible under limited budgets change when climate change is considered, with additional strategies required to avoid impending extinctions from the region. Overall, we find that the ranking of strategies by cost-effectiveness was relatively unaffected by including climate change into decision-making, even though the benefits of the strategies were lower. Future climate conditions and impacts on range shifts become most important to consider when designing comprehensive management plans for the control of invasive animals under limited budgets to maximize the number of threatened species that can be protected.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Espécies Introduzidas , Animais , Austrália , Conservação dos Recursos Naturais/economia , Análise Custo-Benefício , Espécies em Perigo de Extinção , Modelos Biológicos
3.
J Anim Ecol ; 84(1): 155-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24903085

RESUMO

Threats to migratory animals can occur at multiple periods of the annual cycle that are separated by thousands of kilometres and span international borders. Populations of the iconic monarch butterfly (Danaus plexippus) of eastern North America have declined over the last 21 years. Three hypotheses have been posed to explain the decline: habitat loss on the overwintering grounds in Mexico, habitat loss on the breeding grounds in the United States and Canada, and extreme weather events. Our objectives were to assess population viability, determine which life stage, season and geographical region are contributing the most to population dynamics and test the three hypotheses that explain the observed population decline. We developed a spatially structured, stochastic and density-dependent periodic projection matrix model that integrates patterns of migratory connectivity and demographic vital rates across the annual cycle. We used perturbation analysis to determine the sensitivity of population abundance to changes in vital rate among life stages, seasons and geographical regions. Next, we compared the singular effects of each threat to the full model where all factors operate concurrently. Finally, we generated predictions to assess the risk of host plant loss as a result of genetically modified crops on current and future monarch butterfly population size and extinction probability. Our year-round population model predicted population declines of 14% and a quasi-extinction probability (<1000 individuals) >5% within a century. Monarch abundance was more than four times more sensitive to perturbations of vital rates on the breeding grounds than on the wintering grounds. Simulations that considered only forest loss or climate change in Mexico predicted higher population sizes compared to milkweed declines on the breeding grounds. Our model predictions also suggest that mitigating the negative effects of genetically modified crops results in higher population size and lower extinction risk. Recent population declines stem from reduction in milkweed host plants in the United States that arise from increasing adoption of genetically modified crops and land-use change, not from climate change or degradation of forest habitats in Mexico. Therefore, reducing the negative effects of host plant loss on the breeding grounds is the top conservation priority to slow or halt future population declines of monarch butterflies in North America.


Assuntos
Migração Animal , Borboletas/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Agricultura/métodos , Animais , Asclepias/crescimento & desenvolvimento , Canadá , Extinção Biológica , Feminino , México , Modelos Biológicos , Dinâmica Populacional , Estações do Ano , Estados Unidos
4.
Glob Chang Biol ; 20(2): 382-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23913584

RESUMO

Regrowing forests on cleared land is a key strategy to achieve both biodiversity conservation and climate change mitigation globally. Maximizing these co-benefits, however, remains theoretically and technically challenging because of the complex relationship between carbon sequestration and biodiversity in forests, the strong influence of climate variability and landscape position on forest development, the large number of restoration strategies possible, and long time-frames needed to declare success. Through the synthesis of three decades of knowledge on forest dynamics and plant functional traits combined with decision science, we demonstrate that we cannot always maximize carbon sequestration by simply increasing the functional trait diversity of trees planted. The relationships between plant functional diversity, carbon sequestration rates above ground and in the soil are dependent on climate and landscape positions. We show how to manage 'identities' and 'complementarities' between plant functional traits to achieve systematically maximal cobenefits in various climate and landscape contexts. We provide examples of optimal planting and thinning rules that satisfy this ecological strategy and guide the restoration of forests that are rich in both carbon and plant functional diversity. Our framework provides the first mechanistic approach for generating decision-makingrules that can be used to manage forests for multiple objectives, and supports joined carbon credit and biodiversity conservation initiatives, such as Reducing Emissions from Deforestation and forest Degradation REDD+. The decision framework can also be linked to species distribution models and socio-economic models to find restoration solutions that maximize simultaneously biodiversity, carbon stocks, and other ecosystem services across landscapes. Our study provides the foundation for developing and testing cost-effective and adaptable forest management rules to achieve biodiversity, carbon sequestration, and other socio-economic co-benefits under global change.


Assuntos
Biodiversidade , Sequestro de Carbono , Técnicas de Apoio para a Decisão , Agricultura Florestal/métodos , Árvores/química , Árvores/crescimento & desenvolvimento , Ecossistema , Modelos Biológicos , Queensland , Solo/química
5.
PeerJ ; 12: e16809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304187

RESUMO

This study addresses the ongoing debate on forest land-sparing vs land-sharing, aiming to identify effective strategies for both species conservation and timber exploitation. Previous studies, guided by control theory, compared sharing and sparing by optimizing logging intensity along a presumed trade-off between timber yield and ecological outcomes. However, the realism of this trade-off assumption is questioned by ecological and governance theories. This article introduces a mathematical model of Social-Ecological System (SES) dynamics, distinguishing selective logging intensification between sharing and sparing, with associated governance requirements. The model assumes consistent rules for logging, replanting, conservation support, access regulation, socio-economic, soil and climate conditions. Actors, each specialized in sustainable logging and replanting of a single species, coexist with various tree species in the same space for land sharing, contrasting with separate actions on monospecific stands for sparing. In sharing scenarios, a gradient of intensification is created from 256 combinations of selective logging for a forest with eight coexisting tree species. This is compared with eight scenarios of monospecific stands adjacent to a spared eight-species forest area safeguarded from logging. Numerical projections over 100 years rank sparing and sharing options based on forest-level tree biodiversity, carbon storage, and timber yield. The findings underscore the context-specific nature of the problem but identify simple heuristics to optimize both sparing and sharing practices. Prioritizing the most productive tree species is effective when selecting sparing, especially when timber yield and biodiversity are benchmarks. Conversely, sharing consistently outperforms sparing when carbon storage and biodiversity are main criteria. Sharing excels across scenarios considering all three criteria, provided a greater diversity of actors access and coexist in the shared space under collective rules ensuring independence and sustainable logging and replanting. The present model addresses some limitations in existing sparing-sharing theory by aligning with established ecological theories exploring the intricate relationship between disturbance practices, productivity and ecological outcomes. The findings also support a governance hypothesis from the 2009 Nobel Prize in Economics (E. Ostrom) regarding the positive impact on biodiversity and productivity of increasing polycentricity, i.e., expanding the number of independent species controllers' channels (loggers/replanters/supporters/regulators). This hypothesis, rooted in Ashby's law of requisite variety from control theory, suggests that resolving the sharing/sparing dilemma may depend on our ability to predict the yield-ecology performances of sparing (in heterogeneous landscapes) vs of sharing (in the same space) from their respective levels of "polycentric requisite variety".


Assuntos
Conservação dos Recursos Naturais , Florestas , Ecossistema , Árvores , Carbono
6.
PeerJ ; 11: e14731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874962

RESUMO

For millennia, societies have tried to find ways to sustain people's livelihoods by setting rules to equitably and sustainably access, harvest and manage common pools of resources (CPR) that are productive and rich in species. But what are the elements that explain historical successes and failures? Elinor Ostrom suggested that it depends on at least eight axiomatic principles of good governance, whereas empirical results suggest that these principles are not sufficient to describe them, especially when applied to CPRs that possess great social and ecological diversity. The aim of this article is to explore the behavior of a mathematical model of multi-species forest dynamics that respects the foundations of ecology and Ostrom's governance theory, in order to detect possible constraints inherent to the functioning of these complex systems. The model reveals that fundamental structural laws of compatibilities between species life-history traits are indeed constraining the level of co-existence (average and variance) between a diversity of co-vulnerable timber resource users (RU) and of competing tree species. These structural constraints can also lead to unexpected outcomes. For instance in wetter forest commons, opening up the access to as many diverse RUs as there are competing tree species, produces a diversity of independently-controlled disturbances on species, collectively improving the chances of coexistence between species with different life-history traits. Similar benefits are observed on forest carbon and on profits from timber harvesting. However in drier forest commons, the same benefits cannot be observed, as predicted on the basis of the constraining laws. The results show that the successes and failures of certain management strategies can be reasonably explained by simple mechanistic theories from ecology and the social-ecological sciences, which are themselves constrained by fundamental ecological invariants. If corroborated, the results could be used, in conjunction with Ostrom's CPR theory, to understand and solve various human-nature coexistence dilemmas in complex social-ecological systems.


Assuntos
Florestas , Pesquisa , Humanos , Ecossistema , Árvores , Carbono
7.
Ecol Lett ; 13(9): 1182-97, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20561015

RESUMO

Explaining variation in population growth rates is fundamental to predicting population dynamics and population responses to environmental change. In this study, we used matrix population models, which link birth, growth and survival to population growth rate, to examine how and why population growth rates vary within and among 50 terrestrial plant species. Population growth rates were more similar within species than among species; with phylogeny having a minimal influence on among-species variation. Most population growth rates decreased over the observation period and were negatively autocorrelated between years; that is, higher than average population growth rates tended to be followed by lower than average population growth rates. Population growth rates varied more through time than space; this temporal variation was due mostly to variation in post-seedling survival and for a subset of species was partly explained by response to environmental factors, such as fire and herbivory. Stochastic population growth rates departed from mean matrix population growth rate for temporally autocorrelated environments. Our findings indicate that demographic data and models of closely related plant species cannot necessarily be used to make recommendations for conservation or control, and that post-seedling survival and the sequence of environmental conditions are critical for determining plant population growth rate.


Assuntos
Desenvolvimento Vegetal , Ecossistema , Modelos Biológicos , Filogenia , Plantas/classificação , Plantas/genética , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie , Processos Estocásticos
8.
C R Biol ; 329(1): 31-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16399641

RESUMO

To better understand the role of habitat quality and boundaries on population dynamics at the landscape scale, we develop a model combining a spatially implicit approach, a spatial population Leslie-type model and an implicit model of habitat fragmentation. An original approach of elasticity permits to identify which types of element and boundary influence the most population viability according to the wood fragmentation degree. The studied species is a corridor forest insect sensitive to fragmentation (Abax parallelepipedus, Coleoptera, Carabidae). We show that a single large patch of wood is better than several small patches for the population viability.


Assuntos
Meio Ambiente , Modelos Biológicos , Dinâmica Populacional , Animais , Canadá , Besouros/crescimento & desenvolvimento , Besouros/fisiologia , Europa (Continente) , Árvores
9.
PLoS One ; 7(2): e32323, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384216

RESUMO

Phenotypic plasticity has long been suspected to allow invasive species to expand their geographic range across large-scale environmental gradients. We tested this possibility in Australia using a continental scale survey of the invasive tree Parkinsonia aculeata (Fabaceae) in twenty-three sites distributed across four climate regions and three habitat types. Using tree-level responses, we detected a trade-off between seed mass and seed number across the moisture gradient. Individual trees plastically and reversibly produced many small seeds at dry sites or years, and few big seeds at wet sites and years. Bigger seeds were positively correlated with higher seed and seedling survival rates. The trade-off, the relation between seed mass, seed and seedling survival, and other fitness components of the plant life-cycle were integrated within a matrix population model. The model confirms that the plastic response resulted in average fitness benefits across the life-cycle. Plasticity resulted in average fitness being positively maintained at the wet and dry range margins where extinction risks would otherwise have been high ("Jack-of-all-Trades" strategy JT), and fitness being maximized at the species range centre where extinction risks were already low ("Master-of-Some" strategy MS). The resulting hybrid "Jack-and-Master" strategy (JM) broadened the geographic range and amplified average fitness in the range centre. Our study provides the first empirical evidence for a JM species. It also confirms mechanistically the importance of phenotypic plasticity in determining the size, the shape and the dynamic of a species distribution. The JM allows rapid and reversible phenotypic responses to new or changing moisture conditions at different scales, providing the species with definite advantages over genetic adaptation when invading diverse and variable environments. Furthermore, natural selection pressure acting on phenotypic plasticity is predicted to result in maintenance of the JT and strengthening of the MS, further enhancing the species invasiveness in its range centre.


Assuntos
Fabaceae/fisiologia , Espécies Introduzidas , Fenótipo , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Plântula/fisiologia , Adaptação Fisiológica , Austrália , Clima , Simulação por Computador , Ecossistema , Meio Ambiente , Genes de Plantas , Geografia , Modelos Genéticos , Modelos Estatísticos , Modelos Teóricos , Sementes , Seleção Genética , Especificidade da Espécie , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA