Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 235(4787): 460-5, 1987 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17810340

RESUMO

Acid deposition and photochemical smog are urban air pollution problems, and they remain localized as long as the sulfur, nitrogen, and hydrocarbon pollutants are confined to the lower troposphere (below about 1-kilometer altitude) where they are short-lived. If, however, the contaminants are rapidly transported to the upper troposphere, then their atmospheric residence times grow and their range of influence expands dramatically. Although this vertical transport ameliorates some of the effects of acid rain by diluting atmospheric acids, it exacerbates global tropospheric ozone production by redistributing the necessary nitrogen catalysts. Results of recent computer simulations suggest that thunderstorms are one means of rapid vertical transport. To test this hypothesis, several research aircraft near a midwestern thunderstrom measured carbon monoxide, hydrocarbons, ozone, and reactive nitrogen compounds. Their concentrations were much greater in the outflow region of the storm, up to 11 kilometers in altitude, than in surrounding air. Trace gas measurements can thus be used to track the motion of air in and around a cloud. Thunderstorms may transform local air pollution problems into regional or global atmospheric chemistry problems.

2.
J Geophys Res Atmos ; 123(19): 11238-11261, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32023330

RESUMO

Deep convective transport of surface moisture and pollution from the planetary boundary layer to the upper troposphere and lower stratosphere affects the radiation budget and climate. This study uses cloud-parameterized Weather Research and Forecasting model coupled with Chemistry simulations to analyze the subgrid deep convective transport of CO at 12- and 36-km horizontal resolution in supercell and mesoscale convective systems observed during the 2012 Deep Convective Clouds and Chemistry field campaign and compares the simulation results with aircraft measurements and cloud-resolved simulations. The best Weather Research and Forecasting simulation of these storms was obtained with the use of the Grell-Freitas convective scheme. The default Weather Research and Forecasting model coupled with Chemistry subgrid convective transport scheme was replaced with a scheme to compute convective transport within the Grell-Freitas subgrid cumulus parameterization, which resulted in improved transport simulations. We examined the CO tendencies due to subgrid- and grid-scale convective transport. Results showed that the subgrid convective transport started earlier than the grid-scale convective transport. The subgrid-scale convective transport reached its maximum during the hour prior to the formation of the grid-scale constant-altitude detrainment layer. After that, both the subgrid- and grid-scale convective transport began to decrease. The subgrid-scale convective transport played a more significant role in the supercell case than the mesoscale convective system case. Subgrid contribution reached ~90% at the beginning of the storm and decreased to ~30% (17%) for the 36-km (12-km) domain 4 hr later.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA