Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Radiol ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968475

RESUMO

OBJECTIVE: To evaluate a recently proposed CT-based algorithm for diagnosis of clear-cell renal cell carcinoma (ccRCC) among small (≤ 4 cm) solid renal masses diagnosed by renal mass biopsy. METHODS: This retrospective study included 51 small renal masses in 51 patients with renal-mass CT and biopsy between 2014 and 2021. Three radiologists independently evaluated corticomedullary phase CT for the following: heterogeneity and attenuation ratio (mass:renal cortex), which were used to inform the CT score (1-5). CT score ≥ 4 was considered positive for ccRCC. Diagnostic accuracy was calculated for each reader and overall using fixed effects logistic regression modelling. RESULTS: There were 51% (26/51) ccRCC and 49% (25/51) other masses. For diagnosis of ccRCC, area under curve (AUC), sensitivity, specificity, and positive predictive value (PPV) were 0.69 (95% confidence interval 0.61-0.76), 78% (68-86%), 59% (46-71%), and 67% (54-79%), respectively. CT score ≤ 2 had a negative predictive value 97% (92-99%) to exclude diagnosis of ccRCC. For diagnosis of papillary renal cell carcinoma (pRCC), CT score ≤ 2, AUC, sensitivity, specificity, and PPV were 0.89 (0.81-0.98), 81% (58-94%), 98% (93-99%), and 85% (62-97%), respectively. Pooled inter-observer agreement for CT scoring was moderate (Fleiss weighted kappa = 0.52). CONCLUSION: The CT scoring system for prediction of ccRCC was sensitive with a high negative predictive value and moderate agreement. The CT score is highly specific for diagnosis of pRCC. CLINICAL RELEVANCE STATEMENT: The CT score algorithm may help guide renal mass biopsy decisions in clinical practice, with high sensitivity to identify clear-cell tumors for biopsy to establish diagnosis and grade and high specificity to avoid biopsy in papillary tumors. KEY POINTS: • A CT score ≥ 4 had high sensitivity and negative predictive value for diagnosis of clear-cell renal cell carcinoma (RCC) among solid ≤ 4-cm renal masses. • A CT score ≤ 2 was highly specific for diagnosis of papillary RCC among solid ≤ 4-cm renal masses. • Inter-observer agreement for CT score was moderate.

2.
AJR Am J Roentgenol ; 219(5): 814-823, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35766532

RESUMO

BACKGROUND. The MRI clear cell likelihood score predicts the likelihood that a renal mass is clear cell renal cell carcinoma (ccRCC). A CT-based algorithm has not yet been established. OBJECTIVE. The purpose of our study was to develop and evaluate a CT-based algorithm for diagnosing ccRCC among small (≤ 4 cm) solid renal masses. METHODS. This retrospective study included 148 patients (73 men, 75 women; mean age, 58 ± 12 [SD] years) with 148 small (≤ 4 cm) solid (> 25% enhancing tissue) renal masses that underwent renal mass CT (unenhanced, corticomedullary, and nephrographic phases) before resection between January 2016 and December 2019. Two radiologists independently evaluated CT examinations and recorded calcification, mass attenuation in all phases, mass-to-cortex corticomedullary attenuation ratio, and heterogeneity score (score on a 5-point Likert scale, assessed in corticomedullary phase). Features associated with ccRCC were identified by multivariable logistic regression analysis and then used to create a five-tiered CT score for diagnosing ccRCC. RESULTS. The masses comprised 53% (78/148) ccRCC and 47% (70/148) other histologic diagnoses. The mass-to-cortex corticomedullary attenuation ratio was higher for ccRCC than for other diagnoses (reader 1: 0.84 ± 0.68 vs 0.68 ± 0.65, p = .02; reader 2: 0.75 ± 0.29 vs 0.59 ± 0.25, p = .02). The heterogeneity score was higher for ccRCC than other diagnoses (reader 1: 4.0 ± 1.1 vs 1.5 ± 1.6, p < .001; reader 2: 4.4 ± 0.9 vs 3.3 ± 1.5, p < .001). Other features showed no difference. A five-tiered diagnostic algorithm including the mass-to-cortex corticomedullary attenuation ratio and heterogeneity score had interobserver agreement of 0.71 (weighted κ) and achieved an AUC for diagnosing ccRCC of 0.75 (95% CI, 0.68-0.82) for reader 1 and 0.72 (95% CI, 0.66-0.82) for reader 2. A CT score of 4 or greater achieved sensitivity, specificity, and PPV of 71% (95% CI, 59-80%), 79% (95% CI, 67-87%), and 79% (95% CI, 67-87%) for reader 1 and 42% (95% CI, 31-54%), 81% (95% CI, 70-90%), and 72% (95% CI, 56-84%) for reader 2. A CT score of 2 or less had NPV of 85% (95% CI, 69-95%) for reader 1 and 88% (95% CI, 69-97%) for reader 2. CONCLUSION. A five-tiered renal CT algorithm, including the mass-to-cortex corticomedullary attenuation ratio and heterogeneity score, had substantial interobserver agreement, moderate AUC and PPV, and high NPV for diagnosing ccRCC. CLINICAL IMPACT. The CT algorithm, if validated, may represent a useful clinical tool for diagnosing ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/patologia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Estudos Retrospectivos , Diagnóstico Diferencial , Algoritmos , Tomografia Computadorizada Multidetectores/métodos
3.
AJR Am J Roentgenol ; 221(1): 144-146, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36856301

RESUMO

In a secondary analysis of 148 small (≤ 4 cm) solid renal masses, none of three CT features (hyperattenuation on unenhanced images, segmental enhancement inversion, or arterial-to-delayed enhancement ratio) significantly improved the performance of a multiparametric CT score for the diagnosis of clear cell renal cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Tomografia Computadorizada por Raios X , Estudos Retrospectivos , Diagnóstico Diferencial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA