Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 23(9): 2391-9, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24334764

RESUMO

Cohen syndrome (CS) is a rare autosomal recessive disorder with multisytemic clinical features due to mutations in the VPS13B gene, which has recently been described encoding a mandatory membrane protein involved in Golgi integrity. As the Golgi complex is the place where glycosylation of newly synthesized proteins occurs, we hypothesized that VPS13B deficiency, responsible of Golgi apparatus disturbance, could lead to glycosylation defects and/or mysfunction of this organelle, and thus be a cause of the main clinical manifestations of CS. The glycosylation status of CS serum proteins showed a very unusual pattern of glycosylation characterized by a significant accumulation of agalactosylated fucosylated structures as well as asialylated fucosylated structures demonstrating a major defect of glycan maturation in CS. However, CS transferrin and α1-AT profiles, two liver-derived proteins, were normal. We also showed that intercellular cell adhesion molecule 1 and LAMP-2, two highly glycosylated cellular proteins, presented an altered migration profile on SDS-PAGE in peripheral blood mononuclear cells from CS patients. RNA interference against VPS13B confirmed these glycosylation defects. Experiments with Brefeldin A demonstrated that intracellular retrograde cell trafficking was normal in CS fibroblasts. Furthermore, early endosomes were almost absent in these cells and lysosomes were abnormally enlarged, suggesting a crucial role of VPS13B in endosomal-lysosomal trafficking. Our work provides evidence that CS is associated to a tissue-specific major defect of glycosylation and endosomal-lysosomal trafficking defect, suggesting that this could be a new key element to decipher the mechanisms of CS physiopathology.


Assuntos
Dedos/anormalidades , Deficiência Intelectual/metabolismo , Microcefalia/metabolismo , Hipotonia Muscular/metabolismo , Miopia/metabolismo , Obesidade/metabolismo , Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Deficiências do Desenvolvimento/metabolismo , Eletroforese em Gel de Poliacrilamida , Fibroblastos/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Interferência de RNA , Degeneração Retiniana , Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
Am J Hum Genet ; 93(1): 141-9, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23810378

RESUMO

Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts.


Assuntos
Transtornos do Crescimento/genética , Hipercalcemia/genética , Resistência à Insulina/genética , Doenças Metabólicas/genética , Nefrocalcinose/genética , Fosfatidilinositol 3-Quinases/metabolismo , Análise Mutacional de DNA , Exoma , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Predisposição Genética para Doença , Idade Gestacional , Glucose/metabolismo , Glucose/farmacologia , Humanos , Insulina/metabolismo , Insulina/farmacologia , Masculino , Mutação , Linhagem , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA