Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L776-L787, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37814791

RESUMO

Asthma susceptibility is influenced by environmental, genetic, and epigenetic factors. DNA methylation is one form of epigenetic modification that regulates gene expression and is both inherited and modified by environmental exposures throughout life. Prenatal development is a particularly vulnerable time period during which exposure to maternal asthma increases asthma risk in offspring. How maternal asthma affects DNA methylation in offspring and what the consequences of differential methylation are in subsequent generations are not fully known. In this study, we tested the effects of grandmaternal house dust mite (HDM) allergen sensitization during pregnancy on airway physiology and inflammation in HDM-sensitized and challenged second-generation mice. We also tested the effects of grandmaternal HDM sensitization on tissue-specific DNA methylation in allergen-naïve and -sensitized second-generation mice. Descendants of both allergen- and vehicle-exposed grandmaternal founders exhibited airway hyperreactivity after HDM sensitization. However, grandmaternal allergen sensitization significantly potentiated airway hyperreactivity and altered the epigenomic trajectory in second-generation offspring after HDM sensitization compared with HDM-sensitized offspring from vehicle-exposed founders. As a result, biological processes and signaling pathways associated with epigenetic modifications were distinct between lineages. A targeted analysis of pathway-associated gene expression found that Smad3 was significantly dysregulated as a result of grandmaternal allergen sensitization. These data show that grandmaternal allergen exposure during pregnancy establishes a unique epigenetic trajectory that reprograms allergen responses in second-generation offspring and may contribute to asthma risk.NEW & NOTEWORTHY Asthma susceptibility is influenced by environmental, genetic, and epigenetic factors. This study shows that maternal allergen exposure during pregnancy promotes unique epigenetic trajectories in second-generation offspring at baseline and in response to allergen sensitization, which is associated with the potentiation of airway hyperreactivity. These effects are one mechanism by which maternal asthma may influence the inheritance of asthma risk.


Assuntos
Asma , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Camundongos , Animais , Alérgenos , Epigenômica , Efeitos Tardios da Exposição Pré-Natal/genética , Asma/genética , Suscetibilidade a Doenças , Epigênese Genética , Pyroglyphidae
2.
Am J Respir Cell Mol Biol ; 67(1): 89-98, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35363997

RESUMO

Asthma is a heterogeneous inflammatory airway disease that develops in response to a combination of genetic predisposition and environmental exposures. Patients with asthma are grouped into phenotypes with shared clinical features and biomarker profiles to help tailor specific therapies. However, factors driving development of specific phenotypes are poorly understood. Prenatal exposure to maternal asthma is a unique risk factor for childhood asthma. Here we tested whether maternal asthma skews asthma phenotypes in offspring. We compared airway hyperreactivity and inflammatory and neurotrophin lung signatures before and after allergen challenge in offspring born to mice exposed to house dust mite (HDM) or vehicle during pregnancy. Maternal HDM exposure potentiated offspring responses to HDM allergen, significantly increasing both airway hyperreactivity and airway eosinophilia compared with control mice. Maternal HDM exposure broadly skewed the offspring cytokine response from a classic allergen-induced T-helper cell type 2 (Th2)-predominant signature in HDM-treated offspring of vehicle-exposed mothers, toward a mixed Th17/Th1 phenotype in HDM-treated offspring of HDM-exposed mothers. Morphologic analysis determined that maternal HDM exposure also increased airway epithelial sensory nerve density and induced distinct neurotrophin signatures to support airway hyperinnervation. Our results demonstrate that maternal allergen exposure alters fetal lung development and promotes a unique inflammatory phenotype at baseline and in response to allergen that persists into adulthood.


Assuntos
Asma , Pyroglyphidae , Alérgenos , Animais , Asma/genética , Modelos Animais de Doenças , Feminino , Pulmão , Camundongos , Fatores de Crescimento Neural/genética , Fenótipo , Gravidez
3.
Nat Cell Biol ; 23(8): 915-924, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341533

RESUMO

Metastasis is the leading cause of cancer-related deaths and enables cancer cells to compromise organ function by expanding in secondary sites. Since primary tumours and metastases often share the same constellation of driver mutations, the mechanisms that drive their distinct phenotypes are unclear. Here we show that inactivation of the frequently mutated tumour suppressor gene LKB1 (encoding liver kinase B1) has evolving effects throughout the progression of lung cancer, which leads to the differential epigenetic re-programming of early-stage primary tumours compared with late-stage metastases. By integrating genome-scale CRISPR-Cas9 screening with bulk and single-cell multi-omic analyses, we unexpectedly identify LKB1 as a master regulator of chromatin accessibility in lung adenocarcinoma primary tumours. Using an in vivo model of metastatic progression, we further show that loss of LKB1 activates the early endoderm transcription factor SOX17 in metastases and a metastatic-like sub-population of cancer cells within primary tumours. The expression of SOX17 is necessary and sufficient to drive a second wave of epigenetic changes in LKB1-deficient cells that enhances metastatic ability. Overall, our study demonstrates how the downstream effects of an individual driver mutation can change throughout cancer development, with implications for stage-specific therapeutic resistance mechanisms and the gene regulatory underpinnings of metastatic evolution.


Assuntos
Adenocarcinoma/genética , Cromatina/metabolismo , Neoplasias Pulmonares/genética , Metástase Neoplásica/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Quinases Ativadas por AMP , Adenocarcinoma/fisiopatologia , Animais , Linhagem Celular Tumoral , Feminino , Proteínas HMGB/metabolismo , Humanos , Neoplasias Pulmonares/fisiopatologia , Masculino , Camundongos , Mutação , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição SOXF/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA