Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 11(10): 9941-9949, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28953362

RESUMO

Elucidating the origin of carbon nanotube chirality is key for realizing their untapped potential. Currently, prevalent theories suggest that catalyst structure originates chirality via an epitaxial relationship. Here we studied chirality abundances of carbon nanotubes grown on floating liquid Ga droplets, which excludes the influence of catalyst features, and compared them with abundances grown on solid Ru nanoparticles. Results of growth on liquid droplets bolsters the intrinsic preference of carbon nuclei toward certain chiralities. Specifically, the abundance of the (11,1)/χ = 4.31° tube can reach up to 95% relative to (9,4)/χ = 17.48°, although they have exactly the same diameter, (9.156 Å). However, the comparative abundances for the pair, (19,3)/χ = 7.2° and (17,6)/χ = 14.5°, with bigger diameter, (16.405 Å), fluctuate depending on synthesis temperature. The abundances of the same pairs of tubes grown on floating solid polyhedral Ru nanoparticles show completely different trends. Analysis of abundances in relation to nucleation probability, represented by a product of the Zeldovich factor and the deviation interval of a growing nuclei from equilibrium critical size, explain the findings. We suggest that the chirality in the nanotube in general is a result of interplay between intrinsic preference of carbon cluster and induction by catalyst structure. This finding can help to build the comprehensive theory of nanotube growth and offers a prospect for chirality-preferential synthesis of carbon nanotubes by the exploitation of liquid catalyst droplets.

2.
ACS Nano ; 7(2): 1100-7, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23343776

RESUMO

The physical state of the catalyst and its impact on the growth of single-walled carbon nanotubes (SWNTs) is the subject of a long-standing debate. We addressed it here using in situ Raman spectroscopy to measure Fe and Ni catalyst lifetimes during the growth of individual SWNTs across a wide range of temperatures (500-1400 °C). The temperature dependence of the Fe catalyst lifetimes underwent a sharp increase around 1100 °C due to a solid-to-liquid phase transition. By comparing experimental results with the metal-carbon phase diagrams, we prove that SWNTs can grow from solid and liquid phase-catalysts, depending on the temperature.

3.
ACS Appl Mater Interfaces ; 5(18): 9241-6, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23988076

RESUMO

Thin films of transition-metal carbides ZrC, HfC, and TiC were deposited by pulsed-laser deposition under vacuum. The surface chemistry of the films was characterized with ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and Auger electron spectroscopy in situ. X-ray diffraction was used to characterize the film structure. TiC was shown to be nearly stoichiometric and polycrystalline. The TiC was applied to a vertically aligned carbon nanotube sample and characterized by field emission. Field-emission results showed enhanced current and current density at a film thickness, 5 nm, not previously reported in the literature. Emission from TiC films was also shown to be less affected by adsorbates during field emission. Pulsed-laser deposition of TiC offers a distinct advantage over other techniques in that high-quality films can be obtained under ultrahigh vacuum conditions without the use of a reactive background gas or excessively high annealing temperatures. The application of TiC by pulsed-laser deposition as a cathode coating shows potential for integration into a fabrication process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA