Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Quant Spectrosc Radiat Transf ; 186: 17-39, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32817995

RESUMO

TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide),water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.

2.
Sci Total Environ ; 633: 317-328, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29574376

RESUMO

An online-coupled regional Weather Research and Forecasting model with chemistry (WRF-Chem) is utilized incorporating 0.1°×0.1° spatial resolution HTAP (Hemispheric Transport of Air Pollution) anthropogenic emissions to investigate the spatial and temporal distribution of a Saharan dust outbreak, which contributed to high levels (>50µg/m3) of daily PM10 concentrations over Turkey in April 2008. Aerosol optical depth and cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board of Aqua satellite are used to better analyze the synoptic conditions that generated the dust outbreak in April 2008. A "Sharav" low pressure system, which transports the dust from Saharan source region over Turkey along the cold front, tends to move faster in WRF-Chem simulations than observed. This causes the predicted dust event to arrive earlier than observed leading to an overestimation of surface PM10 concentrations in WRF-Chem simulation at the beginning of the event.

3.
Bull Am Meteorol Soc ; 98(1): 106-128, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29636590

RESUMO

The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5° N, 144.8° E) during January-February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15 km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High accuracy, in-situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the UT, where previous observations from balloon-borne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January-February 2014. Together, CONTRAST, ATTREX and CAST, using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.

4.
Int J Orofacial Myology ; 20: 52-3, 1994 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9055664

RESUMO

The key to successful elimination of thumbsucking is motivation. The child and the parents must understand why the sucking must be stopped and the damage it causes to the teeth and palate. In some instances, a parent believes the child needs to suck, and that eliminating thumbsucking will rob the child of a necessary psychological satisfaction or will cause other aberrant behaviors to emerge. This is simply not true. In other instances, a child may have tried numerous gimmicks unsuccessfully or has been nagged relentlessly to get your thumb out of your mouth. The most important goal in presenting a thumb program is to convince both parent and child that you have a method which really works.


Assuntos
Terapia Comportamental/métodos , Sucção de Dedo/terapia , Criança , Pré-Escolar , Protocolos Clínicos , Sucção de Dedo/psicologia , Humanos
5.
Sci Total Environ ; 488-489: 413-21, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24485280

RESUMO

Sahara-originated dust is the most significant natural source of particulate matter; however, this contribution is still unclear in the Eastern Mediterranean especially in Western Turkey, where significant industrial sources and metropolitan areas are located. The Real-time Air Quality Modeling System (RAQMS) is utilized to explore the possible effects of Saharan dust on high levels of PM10 measured in Turkey. RAQMS model is compared with 118-air quality stations distributed throughout Turkey (81 cities) for April 2008. MODIS aerosol product (MOD04 for Terra and MYD04 for Aqua) is used to see columnar aerosol loading of the atmosphere at 550 nm (Aerosol optical depth (AOD) values found to be between 0.6 and 0.8 during the episode). High-resolution vertical profiles of clouds and aerosols are provided from CALIOP, on board of CALISPO satellite. The results suggest a significant contribution of Sahara dust to high levels of PM10 in Turkey with RAQMS and in situ time series showing similar patterns. The two data sets are found to be in agreement with a correlation of 0.87.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental , África do Norte , Atmosfera/química , Material Particulado/análise , Imagens de Satélites , Turquia
6.
Top Stroke Rehabil ; 2(4): 54-7, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27620153
14.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA