Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol J ; 18(11): e2300028, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37318800

RESUMO

In the biopharmaceutical industry, the use of mammalian cells to produce therapeutic proteins is becoming increasingly widespread. Monitoring of these cultures via different analysis techniques is essential to ensure a good quality product while respecting good manufacturing practice (GMP) regulations. Process Analytical Technologies (PAT) tools provide real-time measurements of the physiological state of the culture and enable process automation. Dielectric spectroscopy is a PAT that can be used to monitor the viable cell concentration (VCC) of living cells after processing raw permittivity data. Several modeling approaches exist and estimate biomass with different accuracy. The accuracy of the Cole-Cole and Maxwell Wagner's equations are studied here in the determination of the VCC and cell radius in Chinese hamster ovary (CHO) culture. A sensitivity analysis performed on the parameters entering the equations highlighted the importance of the cell specific parameters such as internal conductivity (σi ) and membrane capacitance (Cm ) in the accuracy of the estimation of VCC and cell radius. The most accurate optimization method found to improve the accuracy involves in-process adjustments of Cm and σi in the model equations with samplings from the bioreactor. This combination of offline and in situ data improved the estimation precision of the VCC by 69% compared to a purely mechanistic model without offline adjustments.


Assuntos
Reatores Biológicos , Espectroscopia Dielétrica , Cricetinae , Animais , Espectroscopia Dielétrica/métodos , Cricetulus , Células CHO , Contagem de Células
2.
Sci Rep ; 11(1): 13691, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211067

RESUMO

Integrating -omics data with biological networks such as protein-protein interaction networks is a popular and useful approach to interpret expression changes of genes in changing conditions, and to identify relevant cellular pathways, active subnetworks or network communities. Yet, most -omics data integration tools are restricted to static networks and therefore cannot easily be used for analyzing time-series data. Determining regulations or exploring the network structure over time requires time-dependent networks which incorporate time as one component in their structure. Here, we present a method to project time-series data on sequential layers of a multilayer network, thus creating a temporal multilayer network (tMLN). We implemented this method as a Cytoscape app we named TimeNexus. TimeNexus allows to easily create, manage and visualize temporal multilayer networks starting from a combination of node and edge tables carrying the information on the temporal network structure. To allow further analysis of the tMLN, TimeNexus creates and passes on regular Cytoscape networks in form of static versions of the tMLN in three different ways: (i) over the entire set of layers, (ii) over two consecutive layers at a time, (iii) or on one single layer at a time. We combined TimeNexus with the Cytoscape apps PathLinker and AnatApp/ANAT to extract active subnetworks from tMLNs. To test the usability of our app, we applied TimeNexus together with PathLinker or ANAT on temporal expression data of the yeast cell cycle and were able to identify active subnetworks relevant for different cell cycle phases. We furthermore used TimeNexus on our own temporal expression data from a mouse pain assay inducing hindpaw inflammation and detected active subnetworks relevant for an inflammatory response to injury, including immune response, cell stress response and regulation of apoptosis. TimeNexus is freely available from the Cytoscape app store at https://apps.cytoscape.org/apps/TimeNexus .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA