Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biometeorol ; 64(1): 71-81, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31478107

RESUMO

Phenological data have become increasingly important as indicators of long-term climate change. Consequently, long-term homogeneity of the records is an important aspect. In this paper, we apply a breakpoint detection algorithm to the phenological series from the Swiss Phenology Network (SPN). A combination of three statistical tests is applied and different constraints are tested with respect to the choice of reference series. Breakpoint detection is only possible for a fraction of the series due to the shortness of some series and the lack of suitable reference series. Spring phases are more likely to be suitable than fall phases because of their higher spatial correlation. Out of nearly 3000 phenological series with at least 20 data points, only about 5% were found to be significantly inhomogeneous, although a visual validation indicates that many mid-sized breakpoints remained undetected. The detected breakpoints were compared with metadata and more than half of them could be attributed to a change of observer.


Assuntos
Mudança Climática , Temperatura
2.
Int J Biometeorol ; 62(6): 1109-1113, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29455297

RESUMO

The Pan European Phenology (PEP) project is a European infrastructure to promote and facilitate phenological research, education, and environmental monitoring. The main objective is to maintain and develop a Pan European Phenological database (PEP725) with an open, unrestricted data access for science and education. PEP725 is the successor of the database developed through the COST action 725 "Establishing a European phenological data platform for climatological applications" working as a single access point for European-wide plant phenological data. So far, 32 European meteorological services and project partners from across Europe have joined and supplied data collected by volunteers from 1868 to the present for the PEP725 database. Most of the partners actively provide data on a regular basis. The database presently holds almost 12 million records, about 46 growing stages and 265 plant species (including cultivars), and can be accessed via http://www.pep725.eu/ . Users of the PEP725 database have studied a diversity of topics ranging from climate change impact, plant physiological question, phenological modeling, and remote sensing of vegetation to ecosystem productivity.


Assuntos
Bases de Dados Factuais , Estações do Ano , Europa (Continente)
3.
Glob Chang Biol ; 23(12): 5189-5202, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28586135

RESUMO

The spring phenology of plants in temperate regions strongly responds to spring temperatures. Climate warming has caused substantial phenological advances in the past, but trends to be expected in the future are uncertain. A simple indicator is temperature sensitivity, the phenological advance statistically associated with a 1°C warmer mean temperature during the "preseason", defined as the most temperature-sensitive period preceding the phenological event. Recent analyses of phenological records have shown a decline in temperature sensitivity of leaf unfolding, but underlying mechanisms were not clear. Here, we propose that climate warming can reduce temperature sensitivity simply by reducing the length of the preseason due to faster bud development during this time period, unless the entire preseason shifts forward so that its temperature does not change. We derive these predictions theoretically from the widely used "thermal time model" for bud development and test them using data for 19 phenological events recorded in 1970-2012 at 108 stations spanning a 1600 m altitudinal range in Switzerland. We consider how temperature sensitivity, preseason start, preseason length and preseason temperature change (i) with altitude, (ii) between the periods 1970-1987 and 1995-2012, which differed mainly in spring temperatures, and (iii) between two non-consecutive sets of 18 years that differed mainly in winter temperatures. On average, temperature sensitivity increased with altitude (colder climate) and was reduced in years with warmer springs, but not in years with warmer winters. These trends also varied among species. Decreasing temperature sensitivity in warmer springs was associated with a limited forward shift of preseason start, higher temperatures during the preseason and reduced preseason length, but not with reduced winter chilling. Our results imply that declining temperature sensitivity can result directly from spring warming and does not necessarily indicate altered physiological responses or stronger constraints such as reduced winter chilling.


Assuntos
Mudança Climática , Plantas , Estações do Ano , Temperatura , Altitude , Clima , Desenvolvimento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA