Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Cell Sci ; 135(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36448461

RESUMO

The appreciation of the importance of interorganelle contacts has steadily increased over the past decades. Advances in imaging, molecular biology and bioinformatic techniques allowed the discovery of new mechanisms involved in the interaction and communication between organelles, providing novel insights into the inner works of a cell. In this Review, with the mitochondria under the spotlight, we discuss the most recent findings on the mechanisms mediating the communication between organelles, focusing on Ca2+ signaling, lipid exchange, cell death and stress responses. Notably, we introduce a new integrative perspective to signaling networks that is regulated by interorganelle interactions - the mitochondria-associated niches - focusing on the link between the molecular determinants of contact sites and their functional outputs, rather than simply physical and structural communication. In addition, we highlight the neuropathological and metabolic implications of alterations in mitochondria-associated niches and outline how this concept might improve our understanding of multi-organelle interactions.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Morte Celular , Transdução de Sinais , Biologia Computacional
2.
J Cell Sci ; 133(15)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788208

RESUMO

Different perturbations alter the function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins in its lumen, a condition termed ER stress. To restore ER proteostasis, a highly conserved pathway is engaged, known as the unfolded protein response (UPR), triggering adaptive programs or apoptosis of terminally damaged cells. IRE1α (also known as ERN1), the most conserved UPR sensor, mediates the activation of responses to determine cell fate under ER stress. The complexity of IRE1α regulation and its signaling outputs is mediated in part by the assembly of a dynamic multi-protein complex, named the UPRosome, that regulates IRE1α activity and the crosstalk with other pathways. We discuss several studies identifying components of the UPRosome that have illuminated novel functions in cell death, autophagy, DNA damage, energy metabolism and cytoskeleton dynamics. Here, we provide a theoretical analysis to assess the biological significance of the UPRosome and present the results of a systematic bioinformatics analysis of the available IRE1α interactome data sets followed by functional enrichment clustering. This in silico approach decoded that IRE1α also interacts with proteins involved in the cell cycle, transport, differentiation, response to viral infection and immune response. Thus, defining the spectrum of IRE1α-binding partners will reveal novel signaling outputs and the relevance of the pathway to human diseases.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas
3.
J Cell Physiol ; 229(10): 1521-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24585571

RESUMO

The chromatin remodeling complex SWI/SNF and the transcription factor C/EBPß play critical roles in osteoblastic cells as they jointly control transcription of a number of bone-related target genes. The largest C/EBPß isoform, LAP*, possesses a short additional N-terminal domain that has been proposed to mediate the interaction of this factor with SWI/SNF in myeloid cells. Here we examine the requirement of a functional N-terminus in C/EBPß-LAP* for binding SWI/SNF and for recruiting this complex to the Ric-8B gene to mediate transcriptional repression. We find that both C/EBPß-LAP* and SWI/SNF simultaneously bind to the Ric-8B promoter in differentiating osteoblasts that repress Ric-8B expression. This decreased expression of Ric-8B is not accompanied by significant changes in histone acetylation at the Ric-8B gene promoter sequence. A single aminoacid change at the C/EBPß-LAP* N-terminus (R3L) that inhibits C/EBPß-LAP*-SWI/SNF interaction, also prevents SWI/SNF recruitment to the Ric-8B promoter as well as C/EBPß-LAP*-dependent repression of the Ric-8B gene. Inducible expression of the C/EBPß-LAP*R3L protein in stably transfected osteoblastic cells demonstrates that this mutant protein binds to C/EBPß-LAP*-target promoters and competes with the endogenous C/EBPß factor. Together our results indicate that a functional N-terminus in C/EBPß-LAP* is required for interacting with SWI/SNF and for Ric-8B gene repression in osteoblasts.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Células 3T3 , Acetilação , Animais , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Fatores de Troca do Nucleotídeo Guanina/genética , Histonas/metabolismo , Camundongos , Mutação , Proteínas Nucleares/genética , Osteocalcina/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Ratos , Transfecção
4.
IUBMB Life ; 65(12): 962-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24227223

RESUMO

The endoplasmic reticulum (ER) is a key subcellular compartment involved in the folding and maturation of around one-third of the total proteome. Accumulation of misfolded proteins in the ER lumen engages a signal transduction pathway known as unfolded protein response (UPR) that feedback to recover ER homeostasis or to trigger apoptosis of irreversible damaged cells. The UPR is initiated by three main stress sensors including protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring protein 1α (IRE1α), which reprogram the genome through the control of downstream transcription factors. In this article, the authors have reviewed most relevant studies uncovering the physiological function of the UPR in different organs and tissues based on the phenotypes observed after genetic manipulation of the pathway in vivo. Biomedical applications of targeting the UPR on a disease context are also discussed.


Assuntos
Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Animais , Apoptose , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Humanos , Camundongos , Especificidade de Órgãos , Fosforilação , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Fatores de Transcrição/fisiologia , eIF-2 Quinase/metabolismo
5.
Cell Calcium ; 113: 102751, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178674

RESUMO

Calcium is a crucial messenger of intracellular and extracellular signals, regulating a great variety of cellular processes such as cell death, proliferation, and metabolism. Inside the cell, calcium signaling is one of the main interorganelle communication mediators, with central functional roles at the endoplasmic reticulum (ER), mitochondria, Golgi complex, and lysosomes. Lysosomal function is highly dependent on lumenal calcium and most of the lysosomal membrane-localised ion channels regulate several lysosomal functions and properties such as lumenal pH. One of these functions configures a specific type of cell death involving lysosomes, named lysosome-dependent cell death (LDCD), which contributes to maintenance of tissue homeostasis, development and pathology when deregulated. Here, we cover the fundamental aspects of LDCD with a special focus on recent advances in calcium signaling in LDCD.


Assuntos
Sinalização do Cálcio , Cálcio , Cálcio/metabolismo , Morte Celular , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo
6.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205565

RESUMO

Collagen is one the most abundant proteins and the main cargo of the secretory pathway, contributing to hepatic fibrosis and cirrhosis due to excessive deposition of extracellular matrix. Here we investigated the possible contribution of the unfolded protein response, the main adaptive pathway that monitors and adjusts the protein production capacity at the endoplasmic reticulum, to collagen biogenesis and liver disease. Genetic ablation of the ER stress sensor IRE1 reduced liver damage and diminished collagen deposition in models of liver fibrosis triggered by carbon tetrachloride (CCl 4 ) administration or by high fat diet. Proteomic and transcriptomic profiling identified the prolyl 4-hydroxylase (P4HB, also known as PDIA1), which is known to be critical for collagen maturation, as a major IRE1-induced gene. Cell culture studies demonstrated that IRE1 deficiency results in collagen retention at the ER and altered secretion, a phenotype rescued by P4HB overexpression. Taken together, our results collectively establish a role of the IRE1/P4HB axis in the regulation of collagen production and its significance in the pathogenesis of various disease states.

7.
Methods Cell Biol ; 165: 199-208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34311868

RESUMO

The lysosome is the main catabolic organelle in the cell, also serving as a signaling platform. Lysosomes maintain a low intraluminal pH where dozens of hydrolytic enzymes degrade a wide variety of macromolecules. Besides degradation of polymers, the lysosome is involved in various cellular processes, including energy metabolism, plasma membrane repair and antigen presentation. Recent work has shown that the lysosome is an important calcium store, modulating diverse cellular functions such as membrane fusion and fission, autophagy and lysosomal biogenesis. Precise measurement of free lysosomal calcium concentration has been hampered by its low luminal pH, since the affinity of most calcium probes decreases with higher proton concentration. Here we detailed an adapted protocol for the simultaneous measurement of lysosomal pH and calcium using dextran-conjugated ratiometric fluorescent dyes. As compared with indirect measurements of lysosomal calcium release using genetically-encoded calcium indicators (GECIs), the present method offers the possibility of obtaining pH-corrected, intraluminal calcium concentrations at single lysosome resolution. It also enables simultaneous temporal resolution of lysosomal calcium and pH.


Assuntos
Cálcio , Corantes Fluorescentes , Dextranos , Concentração de Íons de Hidrogênio , Lisossomos
8.
PLoS One ; 16(7): e0254834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324551

RESUMO

Accumulation of misfolded proteins in the brain is a common hallmark of most age-related neurodegenerative diseases. Previous studies from our group identified the presence of anti-inflammatory and antioxidant compounds in leaves derived from the Chilean berry Ugni molinae (murtilla), in addition to show a potent anti-aggregation activity in models of Alzheimer´s disease. However, possible beneficial effects of berry extracts of murtilla was not investigated. Here we evaluated the efficacy of fruit extracts from different genotypes of Chilean-native U. molinae on reducing protein aggregation using cellular models of Huntington´s disease and assess the correlation with their chemical composition. Berry extraction was performed by exhaustive maceration with increasing-polarity solvents. An unbiased automatic microscopy platform was used for cytotoxicity and protein aggregation studies in HEK293 cells using polyglutamine-EGFP fusion proteins, followed by secondary validation using biochemical assays. Phenolic-rich extracts from murtilla berries of the 19-1 genotype (ETE 19-1) significantly reduced polyglutamine peptide aggregation levels, correlating with the modulation in the expression levels of autophagy-related proteins. Using LC-MS and molecular network analysis we correlated the presence of flavonoids, phenolic acids, and ellagitannins with the protective effects of ETE 19-1 effects on protein aggregation. Overall, our results indicate the presence of bioactive components in ethanolic extracts from U. molinae berries that reduce the load of protein aggregates in living cells.


Assuntos
Frutas , Doença de Huntington , Agregados Proteicos , Antioxidantes/farmacologia , Células HEK293 , Humanos , Myrtaceae/química , Extratos Vegetais/farmacologia , Folhas de Planta
9.
Sci Adv ; 7(46): eabe5469, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767445

RESUMO

Programmed cell death is regulated by the balance between activating and inhibitory signals. Here, we have identified RECS1 (responsive to centrifugal force and shear stress 1) [also known as TMBIM1 (transmembrane BAX inhibitor motif containing 1)] as a proapoptotic member of the TMBIM family. In contrast to other proteins of the TMBIM family, RECS1 expression induces cell death through the canonical mitochondrial apoptosis pathway. Unbiased screening indicated that RECS1 sensitizes cells to lysosomal perturbations. RECS1 localizes to lysosomes, where it regulates their acidification and calcium content, triggering lysosomal membrane permeabilization. Structural modeling and electrophysiological studies indicated that RECS1 is a pH-regulated calcium channel, an activity that is essential to trigger cell death. RECS1 also sensitizes whole animals to stress in vivo in Drosophila melanogaster and zebrafish models. Our results unveil an unanticipated function for RECS1 as a proapoptotic component of the TMBIM family that ignites cell death programs at lysosomes.

10.
Cell Calcium ; 91: 102249, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32711245

RESUMO

The endoplasmic reticulum (ER) is the source of lysosomal calcium. The finding that the protein TMBIM6 -a putative ER calcium channel and cell death regulator -promotes calcium transfer from the ER to lysosomes to induce autophagy uncovers a missing piece in the puzzle of inter-organelle communication.


Assuntos
Autofagia , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Animais , Cálcio/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos
11.
Nat Commun ; 11(1): 2401, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409639

RESUMO

The molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1α under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1α signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1α-dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1α endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1α to catalyze RIDD. The protective role of IRE1α under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis.


Assuntos
Sobrevivência Celular/genética , Reparo do DNA , Proteínas de Drosophila/metabolismo , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA/genética , Animais , Dano ao DNA , Proteínas de Drosophila/genética , Drosophila melanogaster , Endorribonucleases/genética , Feminino , Fibroblastos , Instabilidade Genômica , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Proteostase/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , RNA Mensageiro/metabolismo
12.
Nat Cell Biol ; 21(6): 755-767, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110288

RESUMO

Mitochondria-associated membranes (MAMs) are central microdomains that fine-tune bioenergetics by the local transfer of calcium from the endoplasmic reticulum to the mitochondrial matrix. Here, we report an unexpected function of the endoplasmic reticulum stress transducer IRE1α as a structural determinant of MAMs that controls mitochondrial calcium uptake. IRE1α deficiency resulted in marked alterations in mitochondrial physiology and energy metabolism under resting conditions. IRE1α determined the distribution of inositol-1,4,5-trisphosphate receptors at MAMs by operating as a scaffold. Using mutagenesis analysis, we separated the housekeeping activity of IRE1α at MAMs from its canonical role in the unfolded protein response. These observations were validated in vivo in the liver of IRE1α conditional knockout mice, revealing broad implications for cellular metabolism. Our results support an alternative function of IRE1α in orchestrating the communication between the endoplasmic reticulum and mitochondria to sustain bioenergetics.


Assuntos
Retículo Endoplasmático/metabolismo , Endorribonucleases/genética , Metabolismo Energético , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio/genética , Retículo Endoplasmático/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética
14.
Cell Calcium ; 70: 24-31, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29054537

RESUMO

Endoplasmic reticulum (ER) calcium signaling is implicated in a myriad of coordinated cellular processes. The ER calcium content is tightly regulated as it allows a favorable environment for protein folding, in addition to operate as a major reservoir for fast and specific release of calcium. Altered ER homeostasis impacts protein folding, activating the unfolded protein response (UPR) as a rescue mechanism to restore proteostasis. ER calcium release impacts mitochondrial metabolism and also fine-tunes the threshold to undergo apoptosis under chronic stress. The global coordination between UPR signaling and energetic demands takes place at mitochondrial associated membranes (MAMs), specialized subdomains mediating interorganelle communication. Here we discuss current models explaining the functional relationship between ER homeostasis and various cellular responses to coordinate proteostasis and metabolic maintenance.


Assuntos
Sinalização do Cálcio , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Animais , Humanos , Modelos Biológicos , Resposta a Proteínas não Dobradas
16.
Cell Death Differ ; 24(9): 1478-1487, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28622296

RESUMO

In the last decade, the endoplasmic reticulum (ER) has emerged as a central organelle regulating the core mitochondrial apoptosis pathway. At the ER membrane, a variety of stress signals are integrated toward determining cell fate, involving a complex cross talk between key homeostatic pathways including the unfolded protein response, autophagy, calcium signaling and mitochondrial bioenergetics. In this context, key regulators of cell death of the BCL-2 and TMBIM/BI-1 family of proteins have relevant functions as stress rheostats mediated by the formation of distinct protein complexes that regulate the switch between adaptive and proapoptotic phases under stress. Here, we overview recent advances on our molecular understanding of how the apoptotic machinery integrates stress signals toward cell fate decisions upstream of the mitochondrial gateway of death.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Autofagia/genética , Autofagia/fisiologia , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia
17.
Front Oncol ; 7: 55, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28421160

RESUMO

Endoplasmic reticulum (ER) to mitochondria communication has emerged in recent years as a signaling hub regulating cellular physiology with a relevant contribution to diseases including cancer and neurodegeneration. This functional integration is exerted through discrete interorganelle structures known as mitochondria-associated membranes (MAMs). At these domains, ER/mitochondria physically associate to dynamically adjust metabolic demands and the response to stress stimuli. Here, we provide a focused overview of how the ER shapes the function of the mitochondria, giving a special emphasis to the significance of local signaling of the unfolded protein response at MAMs. The implications to cell fate control and the progression of cancer are also discussed.

18.
Mol Cell Biol ; 31(14): 2997-3008, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21606199

RESUMO

The Ric-8 gene encodes a guanine exchange factor (GEF) that modulates G protein-mediated signaling, exhibiting a relevant role during regulation of cell division. In mammals, two Ric-8 homologues have been reported (Ric-8A and Ric-8B), and recent studies indicate equivalent roles for each protein. Here, we show that the Ric-8B gene is negatively regulated during osteoblast differentiation by the transcription factor C/EBPß. Only the larger C/EBPß isoform (C/EBPß-LAP*) downregulates Ric-8B gene promoter activity in osteoblastic cells. Accordingly, knockdown of C/EBPß expression by small intefering RNA in osteoblastic cells results in a significant increase of Ric-8B gene expression. Transient overexpression of Brg1 or Brm, the catalytic subunits of the SWI/SNF chromatin-remodeling complex, inhibits Ric-8B promoter activity. Also, the presence of inactive SWI/SNF complexes in osteoblastic cells results in increased endogenous Ric-8B transcription, indicating that SWI/SNF activity negatively regulates Ric-8B expression. During osteoblast differentiation, Ric-8B gene repression is accompanied by changes in nucleosome placement at the proximal Ric-8B gene promoter and reduced accessibility to regulatory sequences.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Osteoblastos/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , DNA Helicases/metabolismo , Regulação para Baixo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Osteoblastos/citologia , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA