Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
BJU Int ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837608

RESUMO

OBJECTIVES: To determine whether 6 months of preoperative apalutamide for intermediate-risk prostate cancer (IRPCa) reduces the aggregate postoperative radiotherapy risk and to evaluate associations of molecular perturbations with clinical outcomes in this study cohort. PATIENTS AND METHODS: Between May 2018 and February 2020, eligible patients with IRPCa (Gleason 3 + 4 or 4 + 3 and clinical T2b-c or prostate-specific antigen level of 10-20 ng/mL) were treated with apalutamide 240 mg/day for 6 months followed by radical prostatectomy (RP) in this single-arm, phase II trial. The primary endpoint was presence of any adverse pathological feature at risk of pelvic radiation (pathological T stage after neoadjuvant therapy [yp]T3 or ypN1 or positive surgical margins). Translational studies, including germline and somatic DNA alterations and RNA and protein expression, were performed on post-apalutamide RP specimens, and assessed for associations with clinical outcomes. RESULTS: A total of 40 patients underwent a RP, and only one patient discontinued apalutamide prior to 6 months. In all, 40% had adverse pathological features at time of RP, and the 3-year biochemical recurrence (BCR) rate was 15%, with 27.5% being not evaluable. Genomic alterations frequently seen in metastatic PCas, such as androgen receptor (AR), tumour protein p53 (TP53), phosphatase and tensin homologue (PTEN), or BReast CAncer associated gene (BRCA1/2) were underrepresented in this localised cohort. Adverse pathological features and BCR at 3-years were associated with increased expression of select cell cycle (e.g., E2F targets: adjusted P value [Padj] < 0.001, normalised enrichment score [NES] 2.47) and oxidative phosphorylation (Padj < 0.001, NES 1.62) pathways. CONCLUSIONS: Preoperative apalutamide did not reduce the aggregate postoperative radiation risk to the pre-specified threshold in unselected men with IRPCa. However, transcriptomic analysis identified key dysregulated pathways in tumours associated with adverse pathological outcomes and BCR, which warrant future study. Further investigation of preoperative therapy is underway for men with high-risk PCa.

2.
Lancet Oncol ; 19(10): 1351-1359, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30236511

RESUMO

BACKGROUND: No approved systemic therapy exists for von Hippel-Lindau disease, an autosomal dominant disorder with pleiotropic organ manifestations that include clear cell renal cell carcinomas; retinal, cerebellar, and spinal haemangioblastomas; pheochromocytomas; pancreatic serous cystadenomas; and pancreatic neuroendocrine tumours. We aimed to assess the activity and safety of pazopanib in patients with von Hippel-Lindau disease. METHODS: In this non-randomised, single-centre, open-label, phase 2 trial, adult patients with clinical manifestations of von Hippel-Lindau disease were recruited from the University of Texas MD Anderson Cancer Center (Houston, TX, USA) and were treated with pazopanib (800 mg orally daily) for 24 weeks, with an option to continue treatment if desired by the patient and treating physician. Primary endpoints were the proportion of patients who achieved an objective response and safety in the per-protocol population. The objective response was measured for each patient and each lesion type. Radiographic assessments were done at baseline and every 12 weeks throughout the study. Activity and safety were assessed with continuous monitoring and a Bayesian design. This study is registered with ClinicalTrials.gov, number NCT01436227, and is closed to accrual. FINDINGS: Between Jan 18, 2012, and Aug 10, 2016, we screened 37 patients with genetically confirmed or clinical features consistent with von Hippel-Lindau disease, of whom 31 eligible patients were treated with pazopanib. The proportion of patients who achieved an objective response was 42% (13 of 31 patients). By lesion sites responses were observed in 31 (52%) of 59 renal cell carcinomas, nine (53%) of 17 pancreatic lesions, and two (4%) of 49 CNS haemangioblastomas. Seven (23%) of 31 patients chose to stay on the treatment after 24 weeks. Four (13%) of 31 patients withdrew from the study because of grade 3 or 4 transaminitis, and three (10%) discontinued study treatment because of treatment intolerance with multiple intercurrent grade 1-2 toxicities. Treatment-related serious adverse events included one case each of appendicitis and gastritis and one patient had a fatal CNS bleed. INTERPRETATION: Pazopanib was associated with encouraging preliminary activity in von Hippel-Lindau disease, with a side-effect profile consistent with that seen in previous trials. Pazopanib could be considered as a treatment choice for patients with von Hippel-Lindau disease and growing lesions, or to reduce the size of unresectable lesions in these patients. The safety and activity of pazopanib in this setting warrants further investigation. FUNDING: Novartis Inc and NIH National Cancer Institute core grant.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Doença de von Hippel-Lindau/tratamento farmacológico , Adulto , Inibidores da Angiogênese/efeitos adversos , Feminino , Humanos , Indazóis , Masculino , Estudos Prospectivos , Pirimidinas/efeitos adversos , Sulfonamidas/efeitos adversos , Texas , Fatores de Tempo , Resultado do Tratamento , Doença de von Hippel-Lindau/diagnóstico por imagem , Doença de von Hippel-Lindau/genética
3.
Cancer ; 123(20): 3925-3932, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28657667

RESUMO

BACKGROUND: Prostate cancer has a significant heritable component, and rare deleterious germline variants in certain genes can increase the risk of the disease. The aim of the current study was to describe the prevalence of pathogenic germline variants in cancer-predisposing genes in men with prostate cancer and at least 1 additional primary cancer. METHODS: Using a multigene panel, the authors sequenced germline DNA from 102 men with prostate cancer and at least 1 additional primary cancer who also met ≥1 of the following criteria: 1) age ≤55 years at the time of diagnosis of the first malignancy; 2) rare tumor type or atypical presentation of a common tumor; and/or 3) ≥3 primary malignancies. Cancer family history and clinicopathologic data were independently reviewed by a clinical genetic counselor to determine whether the patient met established criteria for testing for a hereditary cancer syndrome. RESULTS: Sequencing identified approximately 3500 variants. Nine protein-truncating deleterious mutations were found across 6 genes, including BRCA2, ataxia telangiectasia mutated (ATM), mutL homolog 1 (MLH1), BRCA1 interacting protein C-terminal helicase 1 (BRIP1), partner and localizer of BRCA2 (PALB2), and fibroblast growth factor receptor 3 (FGFR3). Likely pathogenic missense variants were identified in checkpoint kinase 2 (CHEK2) and homeobox protein Hox-B13 (HOXB13). In total, 11 of 102 patients (10.8%) were found to have pathogenic or likely pathogenic mutations in cancer-predisposing genes. The majority of these men (64%) did not meet current clinical criteria for germline testing. CONCLUSIONS: Men with prostate cancer and at least 1 additional primary cancer are enriched for harboring a germline deleterious mutation in a cancer-predisposing gene that may impact cancer prognosis and treatment, but the majority do not meet current criteria for clinical genetic testing. Cancer 2017;123:3925-32. © 2017 American Cancer Society.


Assuntos
Mutação em Linhagem Germinativa , Segunda Neoplasia Primária/genética , Síndromes Neoplásicas Hereditárias/genética , Neoplasias da Próstata/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteína BRCA2/genética , Quinase do Ponto de Checagem 2/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi , Proteínas de Grupos de Complementação da Anemia de Fanconi , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteína 1 Homóloga a MutL/genética , Mutação de Sentido Incorreto , Síndromes Neoplásicas Hereditárias/diagnóstico , Proteínas Nucleares/genética , RNA Helicases/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Análise de Sequência de DNA , Proteínas Supressoras de Tumor/genética
5.
Nat Rev Clin Oncol ; 21(4): 278-293, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378898

RESUMO

Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.


Assuntos
Neoplasias , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Reparo do DNA , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Dano ao DNA
6.
Clin Cancer Res ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683200

RESUMO

PURPOSE: To determine the efficacy and safety of risk-adapted combinations of androgen signaling inhibitors and inform disease classifiers for metastatic castration-resistant prostate cancers (mCRPC). EXPERIMENTAL DESIGN: In a modular, randomized phase II trial, 192 men were treated with 8 weeks of abiraterone acetate, prednisone and apalutamide (AAPA; Module 1), then allocated to Modules 2 or 3 based on Satisfactory (≥50% PSA decline from baseline and <5 CTC/7.5 mL) versus Unsatisfactory status. Men in the former were randomized to continue AAPA alone (Module 2A) or with ipilimumab (Module 2B). Men in the latter had carboplatin+cabazitaxel added to AAPA (Module 3). Optional baseline biopsies were subject to correlative studies. RESULTS: Median overall survival (from allocation) was 46.4 (95% CI 39.2, 68.2), 41.4 (95% CI 33.3, 49.9) and 18.7 (95% CI 14.3, 26.3) months in Modules 2A (n=64), 2B (n=64) and 3 (n=59) respectively. Toxicities were within expectations. Of 192 eligible patients, 154 (80.2%) underwent pre-treatment metastatic biopsies. The aggressive variant prostate cancer molecular profile (defects in ≥2 of p53, RB1, and PTEN) was associated with Unsatisfactory status. Exploratory analyses suggested SPP1+ and IGFBP2+ macrophages, druggable myeloid cell markers, and germline pathogenic mutations were enriched in the Unsatisfactory group. CONCLUSIONS: Adding ipilimumab to AAPA did not improve outcomes in men with androgen responsive mCRPC. Despite the addition of carboplatin+cabazitaxel, men in the Unsatisfactory group had shortened survivals. Adaptive designs can enrich for biologically and clinically relevant disease subgroups, to contribute to the development of marker-informed, risk-adapted therapy strategies in men with prostate cancer.

7.
Clin Cancer Res ; 30(10): 2121-2139, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416404

RESUMO

PURPOSE: Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed. EXPERIMENTAL DESIGN: We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models. To refine ATM LOF as a predictive biomarker, we performed a comprehensive pan-cancer analysis of ATM variants in patient tumors and then assessed the ATM variant-to-protein relationship. Finally, we assessed a novel ATM LOF biomarker approach in retrospective clinical data sets of patients treated with platinum-based chemotherapy or ATR inhibition. RESULTS: ART0380 had potent, selective antitumor activity in a range of preclinical cancer models with differing degrees of ATM LOF. Pan-cancer analysis identified 10,609 ATM variants in 8,587 patient tumors. Cancer lineage-specific differences were seen in the prevalence of deleterious (Tier 1) versus unknown/benign (Tier 2) variants, selective pressure for loss of heterozygosity, and concordance between a deleterious variant and ATM loss of protein (LOP). A novel ATM LOF biomarker approach that accounts for variant classification, relationship to ATM LOP, and tissue-specific penetrance significantly enriched for patients who benefited from platinum-based chemotherapy or ATR inhibition. CONCLUSIONS: These data help to better define ATM LOF across tumor types in order to optimize patient selection and improve molecularly targeted therapeutic approaches for patients with ATM LOF cancers.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Animais , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Camundongos , Mutação com Perda de Função , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Especificidade de Órgãos/genética
8.
Clin Cancer Res ; 29(19): 4002-4015, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37527013

RESUMO

PURPOSE: Immune checkpoint blockade (ICB) demonstrates durable clinical benefits in a minority of patients with renal cell carcinoma (RCC). We aimed to identify the molecular features that determine the response and develop approaches to enhance it. EXPERIMENTAL DESIGN: We investigated the effects of SET domain-containing protein 2 (SETD2) loss on the DNA damage response pathway, the cytosolic DNA-sensing pathway, the tumor immune microenvironment, and the response to ataxia telangiectasia and rad3-related (ATR) and checkpoint inhibition in RCC. RESULTS: ATR inhibition activated the cyclic GMP-AMP synthase (cGAS)-interferon regulatory factor 3 (IRF3)-dependent cytosolic DNA-sensing pathway, resulting in the concurrent expression of inflammatory cytokines and immune checkpoints. Among the common RCC genotypes, SETD2 loss is associated with preferential ATR activation and sensitizes cells to ATR inhibition. SETD2 knockdown promoted the cytosolic DNA-sensing pathway in response to ATR inhibition. Treatment with the ATR inhibitor VE822 concurrently upregulated immune cell infiltration and immune checkpoint expression in Setd2 knockdown Renca tumors, providing a rationale for ATR inhibition plus ICB combination therapy. Setd2-deficient Renca tumors demonstrated greater vulnerability to ICB monotherapy or combination therapy with VE822 than Setd2-proficient tumors. Moreover, SETD2 mutations were associated with a higher response rate and prolonged overall survival in patients with ICB-treated RCC but not in patients with non-ICB-treated RCC. CONCLUSIONS: SETD2 loss and ATR inhibition synergize to promote cGAS signaling and enhance immune cell infiltration, providing a mechanistic rationale for the combination of ATR and checkpoint inhibition in patients with RCC with SETD2 mutations.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Dano ao DNA , Linhagem Celular Tumoral , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Imunoterapia , DNA , Proteínas Mutadas de Ataxia Telangiectasia , Microambiente Tumoral/genética
9.
Clin Cancer Res ; 29(21): 4464-4478, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581614

RESUMO

PURPOSE: Speckle-type POZ protein (SPOP) is important in DNA damage response (DDR) and maintenance of genomic stability. Somatic heterozygous missense mutations in the SPOP substrate-binding cleft are found in up to 15% of prostate cancers. While mutations in SPOP predict for benefit from androgen receptor signaling inhibition (ARSi) therapy, outcomes for patients with SPOP-mutant (SPOPmut) prostate cancer are heterogeneous and targeted treatments for SPOPmut castrate-resistant prostate cancer (CRPC) are lacking. EXPERIMENTAL DESIGN: Using in silico genomic and transcriptomic tumor data, proteomics analysis, and genetically modified cell line models, we demonstrate mechanistic links between SPOP mutations, STING signaling alterations, and PARP inhibitor vulnerabilities. RESULTS: We demonstrate that SPOP mutations are associated with upregulation of a 29-gene noncanonical (NC) STING (NC-STING) signature in a subset of SPOPmut, treatment-refractory CRPC patients. We show in preclinical CRPC models that SPOP targets and destabilizes STING1 protein, and prostate cancer-associated SPOP mutations result in upregulated NC-STING-NF-κB signaling and macrophage- and tumor microenvironment (TME)-facilitated reprogramming, leading to tumor cell growth. Importantly, we provide in vitro and in vivo mechanism-based evidence that PARP inhibitor (PARPi) treatment results in a shift from immunosuppressive NC-STING-NF-κB signaling to antitumor, canonical cGAS-STING-IFNß signaling in SPOPmut CRPC and results in enhanced tumor growth inhibition. CONCLUSIONS: We provide evidence that SPOP is critical in regulating immunosuppressive versus antitumor activity downstream of DNA damage-induced STING1 activation in prostate cancer. PARPi treatment of SPOPmut CRPC alters this NC-STING signaling toward canonical, antitumor cGAS-STING-IFNß signaling, highlighting a novel biomarker-informed treatment strategy for prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , NF-kappa B/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Fatores de Transcrição/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Mutação , Nucleotidiltransferases/genética , Nucleotidiltransferases/uso terapêutico , Microambiente Tumoral
10.
Cancers (Basel) ; 15(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38136389

RESUMO

Aggressive-variant prostate cancers (AVPCs) are a subset of metastatic castrate-resistant prostate cancers (mCRPCs) characterized by defects in ≥ two of three of TP53, RB1, and PTEN (AVPCm), a profile linked to lineage plasticity, androgen indifference, and platinum sensitivity. Men with mCRPC undergoing biopsies for progression were assessed for AVPCm using immunohistochemistry (IHC), next-generation sequencing (NGS) of solid tumor DNA (stDNA), and NGS of circulating tumor DNA (ctDNA) assays in CLIA-certified labs. Biopsy characteristics, turnaround times, inter-reader concordance, and inter-assay concordance were assessed. AVPCm was detected in 13 (27%) patients via IHC, two (6%) based on stDNA, and seven (39%) based on ctDNA. The concordance of the IHC reads between pathologists was variable. IHC had a higher detection rate of AVPCm+ tumors with the shortest turnaround times. stDNA had challenges with copy number loss detection, limiting its detection rate. ctDNA detected the greatest proportion of AVPCm+ tumors but had a low tumor content in two thirds of patients. These data show the operational characteristics of AVPCm detection using various assays, and inform trial design using AVPCm as a criterion for patient selection or stratification.

11.
Breast Cancer Res Treat ; 132(2): 487-98, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21647677

RESUMO

Normal mammary gland homeostasis requires the coordinated regulation of protein signaling networks. However, we have little prospective information on whether activation of protein signaling occurs in premalignant mammary epithelial cells, as represented by cells with cytological atypia from women who are at high risk for breast cancer. This information is critical for understanding the role of deregulated signaling pathways in the initiation of breast cancer and for developing targeted prevention and/or treatment strategies for breast cancer in the future. In this pilot and feasibility study, we examined the expression of 52 phosphorylated, total, and cleaved proteins in 31 microdissected Random Periareolar Fine Needle Aspiration (RPFNA) samples by high-throughput Reverse Phase Protein Microarray. Unsupervised hierarchical clustering analysis indicated the presence of four clusters of proteins that represent the following signaling pathways: (1) receptor tyrosine kinase/Akt/mammalian target of rapamycin (RTK/Akt/mTOR), (2) RTK/Akt/extracellular signal-regulated kinase (RTK/Akt/ERK), (3) mitochondrial apoptosis, and (4) indeterminate. Clusters 1 through 3 comprised moderately to highly expressed proteins, while Cluster 4 comprised proteins that are lowly expressed in a majority of RPFNA samples. Our exploratory study showed that the interlinked components of mitochondrial apoptosis pathway are highly expressed in all mammary epithelial cells obtained from high-risk women. In particular, the expression levels of anti-apoptotic Bcl-xL and pro-apoptotic Bad are positively correlated in both non-atypical and atypical samples (unadjusted P < 0.0001), suggesting a delicate balance between the pro-apoptotic and anti-apoptotic regulation of cell proliferation during the early steps of mammary carcinogenesis. Our feasibility study suggests that the activation of key proteins along the RTK/Akt pathway may tip this balance to cell survival. Taken together, our results demonstrate the feasibility of mapping proteomic signaling networks in limited RPFNA samples obtained from high-risk women and the promise of developing rational drug targets or preventative strategies for breast cancer in future proteomic studies with a larger cohort of high-risk women.


Assuntos
Proteínas Reguladoras de Apoptose/análise , Neoplasias da Mama/química , Proteínas de Ciclo Celular/análise , Glândulas Mamárias Humanas/química , Proteômica , Transdução de Sinais , Adulto , Idoso , Apoptose , Biópsia por Agulha Fina , Neoplasias da Mama/patologia , Sobrevivência Celular , Análise por Conglomerados , Estudos de Viabilidade , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Modelos Logísticos , Glândulas Mamárias Humanas/patologia , Microdissecção , Pessoa de Meia-Idade , North Carolina , Projetos Piloto , Estudos Prospectivos , Análise Serial de Proteínas , Proteômica/métodos , Medição de Risco , Fatores de Risco
12.
Cancer Discov ; 12(6): 1542-1559, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35412613

RESUMO

Cancer cells depend on multiple driver alterations whose oncogenic effects can be suppressed by drug combinations. Here, we provide a comprehensive resource of precision combination therapies tailored to oncogenic coalterations that are recurrent across patient cohorts. To generate the resource, we developed Recurrent Features Leveraged for Combination Therapy (REFLECT), which integrates machine learning and cancer informatics algorithms. Using multiomic data, the method maps recurrent coalteration signatures in patient cohorts to combination therapies. We validated the REFLECT pipeline using data from patient-derived xenografts, in vitro drug screens, and a combination therapy clinical trial. These validations demonstrate that REFLECT-selected combination therapies have significantly improved efficacy, synergy, and survival outcomes. In patient cohorts with immunotherapy response markers, DNA repair aberrations, and HER2 activation, we have identified therapeutically actionable and recurrent coalteration signatures. REFLECT provides a resource and framework to design combination therapies tailored to tumor cohorts in data-driven clinical trials and preclinical studies. SIGNIFICANCE: We developed the predictive bioinformatics platform REFLECT and a multiomics- based precision combination therapy resource. The REFLECT-selected therapies lead to significant improvements in efficacy and patient survival in preclinical and clinical settings. Use of REFLECT can optimize therapeutic benefit through selection of drug combinations tailored to molecular signatures of tumors. See related commentary by Pugh and Haibe-Kains, p. 1416. This article is highlighted in the In This Issue feature, p. 1397.


Assuntos
Neoplasias , Oncogenes , Carcinogênese , Biologia Computacional/métodos , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia
13.
JCO Precis Oncol ; 6: e2100267, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108036

RESUMO

PURPOSE: DNA polymerase epsilon is critical to DNA proofreading and replication. Mutations in POLE have been associated with hypermutated tumors and antitumor response to immune checkpoint inhibitor (ICI) therapy. We present a clinicopathologic analysis of patients with advanced cancers harboring POLE mutations, the pattern of co-occurring mutations, and their response to ICI therapy within the context of mutation pathogenicity. METHODS: We conducted a retrospective analysis of next-generation sequencing data at MD Anderson Cancer Center to identify patient tumors with POLE mutations and their co-occurring mutations. The pathogenicity of each mutation was annotated using InterVar and ClinVar. Differences in therapeutic response to ICI, survival, and co-occurring mutations were reported by POLE pathogenicity status. RESULTS: Four hundred fifty-eight patient tumors with POLE mutations were identified from 14,229 next-generation sequencing reports; 15.0% of POLE mutations were pathogenic, 15.9% benign, and 69.1% variant of unknown significance. Eighty-two patients received either programmed death 1 or programmed death ligand-1 inhibitors as monotherapy or in combination with cytotoxic T-cell lymphocyte-4 inhibitors. Patients with pathogenic POLE mutations had improved clinical benefit rate (82.4% v 30.0%; P = .013), median progression-free survival (15.1 v 2.2 months; P < .001), overall survival (29.5 v 6.8 months; P < .001), and longer treatment duration (median 15.5 v 2.5 months; P < .001) compared to those with benign variants. Progression-free survival and overall survival remained superior when adjusting for number of co-occurring mutations (≥ 10 v < 10) and/or microsatellite instability status (proficient mismatch repair v deficient mismatch repair). The number of comutations was not associated with response to ICI (clinical benefit v progressive disease: median 13 v 11 comutations; P = .18). CONCLUSION: Pathogenic POLE mutations were associated with clinical benefit to ICI therapy. Further studies are warranted to validate POLE mutation as a predictive biomarker of ICI therapy.


Assuntos
DNA Polimerase II/genética , Inibidores de Checkpoint Imunológico , Neoplasias , Proteínas de Ligação a Poli-ADP-Ribose/genética , Biomarcadores , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Mutação , Neoplasias/tratamento farmacológico , Estudos Retrospectivos
15.
Clin Cancer Res ; 27(17): 4898-4909, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34168048

RESUMO

PURPOSE: Despite significant benefit for other cancer subtypes, immune checkpoint blockade (ICB) therapy has not yet been shown to significantly improve outcomes for men with castration-resistant prostate cancer (CRPC). Prior data have shown that DNA damage response (DDR) deficiency, via genetic alteration and/or pharmacologic induction using DDR inhibitors (DDRi), may improve ICB response in solid tumors in part due to induction of mitotic catastrophe and innate immune activation. Discerning the underlying mechanisms of this DDRi-ICB interaction in a prostate cancer-specific manner is vital to guide novel clinical trials and provide durable clinical responses for men with CRPC. EXPERIMENTAL DESIGN: We treated prostate cancer cell lines with potent, specific inhibitors of ATR kinase, as well as with PARP inhibitor, olaparib. We performed analyses of cGAS-STING and DDR signaling in treated cells, and treated a syngeneic androgen-indifferent, prostate cancer model with combined ATR inhibition and anti-programmed death ligand 1 (anti-PD-L1), and performed single-cell RNA sequencing analysis in treated tumors. RESULTS: ATR inhibitor (ATRi; BAY1895433) directly repressed ATR-CHK1 signaling, activated CDK1-SPOP axis, leading to destabilization of PD-L1 protein. These effects of ATRi are distinct from those of olaparib, and resulted in a cGAS-STING-initiated, IFN-ß-mediated, autocrine, apoptotic response in CRPC. The combination of ATRi with anti-PD-L1 therapy resulted in robust innate immune activation and a synergistic, T-cell-dependent therapeutic response in our syngeneic mouse model. CONCLUSIONS: This work provides a molecular mechanistic rationale for combining ATR-targeted agents with immune checkpoint blockade for patients with CRPC. Multiple early-phase clinical trials of this combination are underway.


Assuntos
Proteína Quinase CDC2/fisiologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Proteínas Repressoras/fisiologia , Transdução de Sinais , Complexos Ubiquitina-Proteína Ligase/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Masculino , Camundongos
16.
Sci Transl Med ; 13(617): eabe6201, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34705519

RESUMO

Treatment with immune checkpoint blockade (ICB) has resulted in durable responses for a subset of patients with cancer, with predictive biomarkers for ICB response originally identified largely in the context of hypermutated cancers. Although recent clinical data have demonstrated clinical responses to ICB in certain patients with nonhypermutated cancers, previously established ICB response biomarkers have failed to accurately identify which of these patients may benefit from ICB. Here, we demonstrated that a replication stress response (RSR) defect gene expression signature, but not other proposed biomarkers, is associated with ICB response in 12 independent cohorts of patients with nonhypermutated cancer across seven tumor types, including those of the breast, prostate, kidney, and brain. Induction or suppression of RSR deficiencies was sufficient to modulate response to ICB in preclinical models of breast and renal cancers. Mechanistically, we found that despite robust activation of checkpoint kinase 1 signaling in RSR-deficient cancer cells, aberrant replication origin firing caused exhaustion of replication protein A, resulting in accumulation of immunostimulatory cytosolic DNA. We further found that deficient RSR coincided with increased intratumoral dendritic cells in both mouse cancer models and human tumors. Together, this work demonstrates that the RSR defect gene signature can accurately identify patients who may benefit from ICB across numerous nonhypermutated tumor types, and pharmacological induction of RSR defects may further expand the benefits of ICB to more patients.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Neoplasias/tratamento farmacológico
17.
Mol Cancer Ther ; 20(9): 1680-1691, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34158347

RESUMO

We analyzed the efficacy and mechanistic interactions of PARP inhibition (PARPi; olaparib) and CDK4/6 inhibition (CDK4/6i; palbociclib or abemaciclib) combination therapy in castration-resistant prostate cancer (CRPC) and neuroendocrine prostate cancer (NEPC) models. We demonstrated that combined olaparib and palbociblib or abemaciclib treatment resulted in synergistic suppression of the p-Rb1-E2F1 signaling axis at the transcriptional and posttranslational levels, leading to disruption of cell-cycle progression and inhibition of E2F1 gene targets, including genes involved in DDR signaling/damage repair, antiapoptotic BCL-2 family members (BCL-2 and MCL-1), CDK1, and neuroendocrine differentiation (NED) markers in vitro and in vivo In addition, olaparib + palbociclib or olaparib + abemaciclib combination treatment resulted in significantly greater growth inhibition and apoptosis than either single agent alone. We further showed that PARPi and CDK4/6i combination treatment-induced CDK1 inhibition suppressed p-S70-BCL-2 and increased caspase cleavage, while CDK1 overexpression effectively prevented the downregulation of p-S70-BCL-2 and largely rescued the combination treatment-induced cytotoxicity. Our study defines a novel combination treatment strategy for CRPC and NEPC and demonstrates that combination PARPi and CDK4/6i synergistically promotes suppression of the p-Rb1-E2F1 axis and E2F1 target genes, including CDK1 and NED proteins, leading to growth inhibition and increased apoptosis in vitro and in vivo Taken together, our results provide a molecular rationale for PARPi and CDK4/6i combination therapy and reveal mechanism-based clinical trial opportunities for men with NEPC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Diferenciação Celular , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Tumores Neuroectodérmicos/tratamento farmacológico , Poli(ADP-Ribose) Polimerases/química , Neoplasias da Próstata/tratamento farmacológico , Aminopiridinas/administração & dosagem , Animais , Apoptose , Benzimidazóis/administração & dosagem , Ciclo Celular , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Nus , Tumores Neuroectodérmicos/metabolismo , Tumores Neuroectodérmicos/patologia , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Piridinas/administração & dosagem , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Nat Commun ; 11(1): 2135, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358509

RESUMO

A non-immunogenic tumor microenvironment (TME) is a significant barrier to immune checkpoint blockade (ICB) response. The impact of Polybromo-1 (PBRM1) on TME and response to ICB in renal cell carcinoma (RCC) remains to be resolved. Here we show that PBRM1/Pbrm1 deficiency reduces the binding of brahma-related gene 1 (BRG1) to the IFNγ receptor 2 (Ifngr2) promoter, decreasing STAT1 phosphorylation and the subsequent expression of IFNγ target genes. An analysis of 3 independent patient cohorts and of murine pre-clinical models reveals that PBRM1 loss is associated with a less immunogenic TME and upregulated angiogenesis. Pbrm1 deficient Renca subcutaneous tumors in mice are more resistance to ICB, and a retrospective analysis of the IMmotion150 RCC study also suggests that PBRM1 mutation reduces benefit from ICB. Our study sheds light on the influence of PBRM1 mutations on IFNγ-STAT1 signaling and TME, and can inform additional preclinical and clinical studies in RCC.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/microbiologia , Fatores de Transcrição/metabolismo , Animais , Complexo Antígeno-Anticorpo/genética , Complexo Antígeno-Anticorpo/metabolismo , Carcinoma de Células Renais/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Imunofluorescência , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , Neoplasias Renais/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mutação , Fosforilação , Fator de Transcrição STAT1/metabolismo , Análise Serial de Tecidos , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcriptoma/genética
19.
Cancer Cell ; 37(5): 720-734.e13, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32359397

RESUMO

Renal medullary carcinoma (RMC) is a highly lethal malignancy that mainly afflicts young individuals of African descent and is resistant to all targeted agents used to treat other renal cell carcinomas. Comprehensive genomic and transcriptomic profiling of untreated primary RMC tissues was performed to elucidate the molecular landscape of these tumors. We found that RMC was characterized by high replication stress and an abundance of focal copy-number alterations associated with activation of the stimulator of the cyclic GMP-AMP synthase interferon genes (cGAS-STING) innate immune pathway. Replication stress conferred a therapeutic vulnerability to drugs targeting DNA-damage repair pathways. Elucidation of these previously unknown RMC hallmarks paves the way to new clinical trials for this rare but highly lethal malignancy.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Medular/patologia , Carcinoma de Células Renais/patologia , Aberrações Cromossômicas , Replicação do DNA , Neoplasias Renais/patologia , Proteína SMARCB1/metabolismo , Adulto , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Medular/genética , Carcinoma Medular/imunologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Proliferação de Células , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína SMARCB1/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancer Epidemiol Biomarkers Prev ; 18(3): 901-14, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19258476

RESUMO

BACKGROUND: Only 5% of all breast cancers are the result of BRCA1/2 mutations. Methylation silencing of tumor suppressor genes is well described in sporadic breast cancer; however, its role in familial breast cancer is not known. METHODS: CpG island promoter methylation was tested in the initial random periareolar fine-needle aspiration sample from 109 asymptomatic women at high risk for breast cancer. Promoter methylation targets included RARB (M3 and M4), ESR1, INK4a/ARF, BRCA1, PRA, PRB, RASSF1A, HIN-1, and CRBP1. RESULTS: Although the overall frequency of CpG island promoter methylation events increased with age (P<0.0001), no specific methylation event was associated with age. In contrast, CpG island methylation of RARB M4 (P=0.051), INK4a/ARF (P=0.042), HIN-1 (P=0.044), and PRA (P=0.032), as well as the overall frequency of methylation events (P=0.004), was associated with abnormal Masood cytology. The association between promoter methylation and familial breast cancer was tested in 40 unaffected premenopausal women in our cohort who underwent BRCA1/2 mutation testing. Women with BRCA1/2 mutations had a low frequency of CpG island promoter methylation (15 of 15 women had

Assuntos
Neoplasias da Mama/genética , Ilhas de CpG/genética , Biópsia por Agulha Fina , Distribuição de Qui-Quadrado , Inibidor p16 de Quinase Dependente de Ciclina/genética , Citocinas/genética , Metilação de DNA , Feminino , Genes BRCA1 , Genes BRCA2 , Genes Supressores de Tumor , Humanos , Mutação , Reação em Cadeia da Polimerase , Pré-Menopausa , Regiões Promotoras Genéticas/genética , Receptores de Progesterona/genética , Receptores do Ácido Retinoico/genética , Risco , Medição de Risco , Estatísticas não Paramétricas , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA