Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Carcinog ; 56(2): 402-411, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27208550

RESUMO

There is an unmet need to develop new agents or strategies against therapy resistant pancreatic cancer (PanCA). Recent studies from our laboratory showed that STAT3 negatively regulates NF-κB and that inhibition of this crosstalk using Nexrutine® (Nx) reduces transcriptional activity of COX-2. Inhibition of these molecular interactions impedes pancreatic cancer cell growth as well as reduces fibrosis in a preclinical animal model. Nx is an extract derived from the bark of Phellodendron amurense and has been utilized in traditional Chinese medicine as antidiarrheal, astringent, and anti-inflammatory agent for centuries. We hypothesized that "Nx-mediated inhibition of survival molecules like STAT3 and NF-κB in pancreatic cancer cells will improve the efficacy of the conventional chemotherapeutic agent, gemcitabine (GEM)." Therefore, we explored the utility of Nx, one of its active constituents berberine and its derivatives, to enhance the effects of GEM. Using multiple human pancreatic cancer cells we found that combination treatment with Nx and GEM resulted in significant alterations of proteins in the STAT3/NF-κB signaling axis culminating in growth inhibition in a synergistic manner. Furthermore, GEM resistant cells were more sensitive to Nx treatment than their parental GEM-sensitive cells. Interestingly, although berberine, the Nx active component used, and its derivatives were biologically active in GEM sensitive cells they did not potentiate GEM activity when used in combination. Taken together, these results suggest that the natural extract, Nx, but not its active component, berberine, has the potential to improve GEM sensitivity, perhaps by down regulating STAT3/NF-κB signaling. © 2016 Wiley Periodicals, Inc.


Assuntos
Anti-Inflamatórios/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Anti-Inflamatórios/química , Berberina/química , Berberina/farmacologia , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Humanos , NF-kappa B/imunologia , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Neoplasias Pancreáticas/imunologia , Phellodendron/química , Extratos Vegetais/química , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/efeitos dos fármacos , Gencitabina
2.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 4): o558-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23634097

RESUMO

The title compound, C16H13FO3·H2O, has a cis disposition of the carbonyl and olefin bonds about the enone single bond. The arene rings are inclined to one another by 10.05 (6) Å. In the crystal, mol-ecules are linked via O-H⋯O hydrogen bonds involving the water mol-ecules, forming loops which are, in turn, linked via O-H.·O and C-H⋯F hydrogen bonds, forming sheets lying parallel to (103). These networks are linked via π-π inter-actions [centroid-centroid distance = 3.641 (1) Å] involving inversion-related 4-fluoro-phenyl and 4-hy-droxy-3-meth-oxy-phenyl rings.

3.
PLoS One ; 11(1): e0146900, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26745872

RESUMO

Lysine deacetylases (KDACs) are enzymes that reverse the post-translational modification of lysine acetylation. Recently, a series of N-acetylthioureas were synthesized and reported to enhance the activity of KDAC8 with a fluorogenic substrate. To determine if the activation was general, we synthesized three of the most potent N-acetylthioureas and measured their effect with peptide substrates and the fluorogenic substrate under multiple reaction conditions and utilizing two enzyme purification approaches. No activation was observed for any of the three N-acetylthioureas under any assayed conditions. Further characterization of KDAC8 kinetics with the fluorogenic substrate yielded a kcat/KM of 164 ± 17 in the absence of any N-acetylthioureas. This catalytic efficiency is comparable to or higher than that previously reported when KDAC8 was activated by the N-acetylthioureas, suggesting that the previously reported activation effect may be due to use of an enzyme preparation that contains a large fraction of inactive enzyme. Further characterization with a less active preparation and additional substrates leads us to conclude that N-acetylthioureas are not true activators of KDAC8 and only increase activity if the enzyme preparation is below the maximal basal activity.


Assuntos
Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Tioureia/análogos & derivados , Ensaios Enzimáticos , Fluorescamina/química , Histona Desacetilases/química , Histona Desacetilases/genética , Humanos , Cinética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Repressoras/química , Proteínas Repressoras/genética , Especificidade por Substrato , Tioureia/síntese química , Tioureia/química , Tioureia/metabolismo
4.
Acta Crystallogr C Struct Chem ; 71(Pt 4): 262-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25836282

RESUMO

Tetrahydroberberine (systematic name: 9,10-dimethoxy-5,8,13,13a-tetrahydro-6H-benzo[g][1,3]benzodioxolo[5,6-a]quinolizine), C20H21NO4, a widely distributed naturally occurring alkaloid, has been crystallized as a racemic mixture about an inversion center. A bent conformation of the molecule is observed, with an angle of 24.72 (5)° between the arene rings at the two ends of the reduced quinolizinium core. The intermolecular hydrogen bonds that play an apparent role in crystal packing are 1,3-benzodioxole -CH2···OCH3 and -OCH3···OCH3 interactions between neighboring molecules.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Alcaloides de Berberina/química , Alcaloides de Berberina/farmacologia , Cristalografia por Raios X , Conformação Molecular , Estrutura Molecular
5.
Acta Crystallogr C Struct Chem ; 70(Pt 4): 388-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24705054

RESUMO

Dihydroberberine (systematic name: 9,10-dimethoxy-6,8-dihydro-5H-1,3-dioxolo[4,5-g]isoquinolino[3,2-a]isoquinoline), C20H19NO4, a reduced form of pharmacologically important berberine, crystallizes from ethanol without interstitial solvent. The molecule shows a dihedral angle of 27.94 (5)° between the two arene rings at the ends of the molecule, owing to the partial saturation of the inner quinolizine ring system. Although lacking classical O-H or N-H donors, the packing in the crystalline state is clearly governed by C-H···N and C-H···O hydrogen bonds involving the two acetal-type C-H bonds of the 1,3-dioxole ring. Each dihydroberberine molecule is engaged in four hydrogen bonds with neighbouring molecules, twice as donor and twice as acceptor, thus forming a two-dimensional sheet network that lies parallel to the (100) plane.


Assuntos
Berberina/análogos & derivados , Solventes/química , Berberina/química , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA