Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498105

RESUMO

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a lysosomal storage disease caused by mutations in the gene encoding the enzyme iduronate 2-sulfatase (IDS) and biochemically characterized by the accumulation of glycosaminoglycans (GAGs) in different tissues. It is a multisystemic disorder that presents liver abnormalities, the pathophysiology of which is not yet established. In the present study, we evaluated bioenergetics, redox homeostasis, and mitochondrial dynamics in the liver of 6-month-old MPS II mice (IDS-). Our findings show a decrease in the activity of α-ketoglutarate dehydrogenase and an increase in the activities of succinate dehydrogenase and malate dehydrogenase. The activity of mitochondrial complex I was also increased whereas the other complex activities were not affected. In contrast, mitochondrial respiration, membrane potential, ATP production, and calcium retention capacity were not altered. Furthermore, malondialdehyde levels and 2',7'-dichlorofluorescein oxidation were increased in the liver of MPS II mice, indicating lipid peroxidation and increased ROS levels, respectively. Sulfhydryl and reduced glutathione levels, as well as glutathione S-transferase, glutathione peroxidase (GPx), superoxide dismutase, and catalase activities were also increased. Finally, the levels of proteins involved in mitochondrial mass and dynamics were decreased in knockout mice liver. Taken together, these data suggest that alterations in energy metabolism, redox homeostasis, and mitochondrial dynamics can be involved in the pathophysiology of liver abnormalities observed in MPS II.

2.
Biochem Biophys Res Commun ; 684: 149123, 2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-37871522

RESUMO

Aminoacylase 1 (ACY1) deficiency is an inherited metabolic disorder biochemically characterized by high urinary concentrations of aliphatic N-acetylated amino acids and associated with a broad clinical spectrum with predominant neurological signs. Considering that the pathogenesis of ACY1 is practically unknown and the brain is highly dependent on energy production, the in vitro effects of N-acetylglutamate (NAG) and N-acetylmethionine (NAM), major metabolites accumulating in ACY1 deficiency, on the enzyme activities of the citric acid cycle (CAC), of the respiratory chain complexes and glutamate dehydrogenase (GDH), as well as on ATP synthesis were evaluated in brain mitochondrial preparations of developing rats. NAG mildly inhibited mitochondrial isocitrate dehydrogenase 2 (IDH2) activity, moderately inhibited the activities of isocitrate dehydrogenase 3 (IDH3) and complex II-III of the respiratory chain and markedly suppressed the activities of complex IV and GDH. Of note, the NAG-induced inhibitory effect on IDH3 was competitive, whereas that on GDH was mixed. On the other hand, NAM moderately inhibited the activity of respiratory complexes II-III and GDH activities and strongly decreased complex IV activity. Furthermore, NAM was unable to modify any of the CAC enzyme activities, indicating a selective effect of NAG toward IDH mitochondrial isoforms. In contrast, the activities of citrate synthase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and of the respiratory chain complexes I and II were not changed by these N-acetylated amino acids. Finally, NAG and NAM strongly decreased mitochondrial ATP synthesis. Taken together, the data indicate that NAG and NAM impair mitochondrial brain energy homeostasis.


Assuntos
Ácido Glutâmico , Isocitrato Desidrogenase , Ratos , Animais , Ácido Glutâmico/metabolismo , Isocitrato Desidrogenase/metabolismo , Ratos Wistar , Metabolismo Energético , Encéfalo/metabolismo , Trifosfato de Adenosina/metabolismo , Homeostase
3.
Metab Brain Dis ; 36(5): 1015-1027, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33620579

RESUMO

Maple syrup urine disease (MSUD) is a genetic disorder that leads the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine, valine and metabolites. The symptomatology includes psychomotor delay and mental retardation. MSUD therapy comprises a lifelong protein strict diet with low BCAA levels and is well established that high concentrations of Leu and/or its ketoacid are associated with neurological symptoms. Recently, it was demonstrated that the phenylbutyrate (PBA) have the ability to decrease BCAA concentrations. This work aimed the development of lipid-based nanoparticles loaded with PBA, capable of targeting to the central nervous system in order to verify its action mechanisms on oxidative stress and cell death in brain of rats subjected to a MSUD chronic model. PBA-loaded nanoparticles treatment was effective in significantly decreasing BCAA concentration in plasma and Leu in the cerebral cortex of MSUD animals. Furthermore, PBA modulate the activity of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes, as well as preventing the oxidative damage to lipid membranes and proteins. PBA was also able to decrease the glial fibrillary acidic protein concentrations and partially decreased the reactive species production and caspase-3 activity in MSUD rats. Taken together, the data indicate that the PBA-loaded nanoparticles could be an efficient adjuvant in the MSUD therapy, protecting against oxidative brain damage and neuroinflammation.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Córtex Cerebral/efeitos dos fármacos , Doença da Urina de Xarope de Bordo/metabolismo , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Fenilbutiratos/administração & dosagem , Animais , Catalase/metabolismo , Córtex Cerebral/metabolismo , Glutationa Peroxidase/metabolismo , Doença da Urina de Xarope de Bordo/sangue , Doença da Urina de Xarope de Bordo/induzido quimicamente , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
4.
Pharm Res ; 35(11): 221, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30259180

RESUMO

PURPOSE: This study demonstrates the nasal administration (NA) of nanoemulsions complexed with the plasmid encoding for IDUA protein (pIDUA) as an attempt to reach the brain aiming at MPS I gene therapy. METHODS: Formulations composed of DOPE, DOTAP, MCT (NE), and DSPE-PEG (NE-PEG) were prepared by high-pressure homogenization, and assessed in vitro on human fibroblasts from MPS I patients and in vivo on MPS I mice for IDUA production and gene expression. RESULTS: The physicochemical results showed that the presence of DSPE-PEG in the formulations led to smaller and more stable droplets even when submitted to dilution in simulated nasal medium (SNM). In vitro assays showed that pIDUA/NE-PEG complexes were internalized by cells, and led to a 5% significant increase in IDUA activity, besides promoting a two-fold increase in IDUA expression. The NA of pIDUA/NE-PEG complexes to MPS I mice demonstrated the ability to reach the brain, promoting increased IDUA activity and expression in this tissue, as well as in kidney and spleen tissues after treatment. An increase in serum IL-6 was observed after treatment, although with no signs of tissue inflammatory infiltrate according to histopathology and CD68 assessments. CONCLUSIONS: These findings demonstrated that pIDUA/NE-PEG complexes could efficiently increase IDUA activity in vitro and in vivo after NA, and represent a potential treatment for the neurological impairment present in MPS I patients.


Assuntos
Mucopolissacaridose I/terapia , Nanopartículas/química , Ácidos Nucleicos/administração & dosagem , Administração Intranasal , Animais , Encéfalo/metabolismo , Cátions , Sobrevivência Celular/efeitos dos fármacos , Emulsões , Ácidos Graxos Monoinsaturados/química , Fibroblastos/patologia , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos , Humanos , Iduronidase/biossíntese , Iduronidase/genética , Camundongos , Camundongos Endogâmicos C57BL , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Tamanho da Partícula , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Compostos de Amônio Quaternário/química , Baço/metabolismo , Transfecção
5.
Biomed Mater ; 18(2)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36599168

RESUMO

Hybrid scaffolds from natural and synthetic polymers have been widely used due to the complementary nature of their physical and biological properties. The aim of the present study, therefore, has been to analyzein vivoa bilayer scaffold of poly(lactide-co-glycolide)/fibrin electrospun membrane and fibrin hydrogel layer on a rat skin model. Fibroblasts were cultivated in the fibrin hydrogel layer and keratinocytes on the electrospun membrane to generate a skin substitute. The scaffolds without and with cells were tested in a full-thickness wound model in Wistar Kyoto rats. The histological results demonstrated that the scaffolds induced granulation tissue growth, collagen deposition and epithelial tissue remodeling. The wound-healing markers showed no difference in scaffolds when compared with the positive control. Activities of antioxidant enzymes were decreased concerning the positive and negative control. The findings suggest that the scaffolds contributed to the granulation tissue formation and the early collagen deposition, maintaining an anti-inflammatory microenvironment.


Assuntos
Hidrogéis , Alicerces Teciduais , Ratos , Animais , Fibrina , Colágeno/farmacologia , Polímeros , Engenharia Tecidual/métodos
6.
Mol Neurobiol ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910283

RESUMO

Maple syrup urine disease (MSUD) is caused by severe deficiency of branched-chain α-keto acid dehydrogenase complex activity, resulting in tissue accumulation of branched-chain α-keto acids and amino acids, particularly α-ketoisocaproic acid (KIC) and leucine. Affected patients regularly manifest with acute episodes of encephalopathy including seizures, coma, and potentially fatal brain edema during the newborn period. The present work investigated the ex vivo effects of a single intracerebroventricular injection of KIC to neonate rats on redox homeostasis and neurochemical markers of neuronal viability (neuronal nuclear protein (NeuN)), astrogliosis (glial fibrillary acidic protein (GFAP)), and myelination (myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase)) in the cerebral cortex and striatum. KIC significantly disturbed redox homeostasis in these brain structures 6 h after injection, as observed by increased 2',7'-dichlorofluorescein oxidation (reactive oxygen species generation), malondialdehyde levels (lipid oxidative damage), and carbonyl formation (protein oxidative damage), besides impairing the antioxidant defenses (diminished levels of reduced glutathione and altered glutathione peroxidase, glutathione reductase, and superoxide dismutase activities) in both cerebral structures. Noteworthy, the antioxidants N-acetylcysteine and melatonin attenuated or normalized most of the KIC-induced effects on redox homeostasis. Furthermore, a reduction of NeuN, MBP, and CNPase, and an increase of GFAP levels were observed at postnatal day 15, suggesting neuronal loss, myelination injury, and astrocyte reactivity, respectively. Our data indicate that disruption of redox homeostasis, associated with neural damage caused by acute intracerebral accumulation of KIC in the neonatal period may contribute to the neuropathology characteristic of MSUD patients.

7.
FEMS Microbiol Lett ; 368(3)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33452877

RESUMO

In bacteria, the biosynthesis of the cofactor flavin adenine dinucleotide (FAD), important in many physiological responses, is catalyzed by the bifunctional enzyme FAD synthase (FADSyn) which converts riboflavin into FAD by both kinase and adenylylation activity. The in silico 3D structure of a putative FADSyn from Mycoplasma hyopneumoniae (MhpFADSyn), the etiological agent of enzootic pneumonia was already reported, nevertheless, the in vitro functional characterization was not yet demonstrated. Our phylogenetic analysis revealed that MhpFADSyn is close related to the bifunctional FADSyn from Corynebacterium ammoniagenes. However, only the domain related to adenylylation was assigned by InterPro database. The activity of MhpFADSyn was evaluated through in vitro enzymatic assays using cell extracts from IPTG-inducible heterologous expression of MhpFADSyn in Escherichia coli. The flavoproteins were analyzed by HPLC and results showed that IPTG-induced cell lysate resulted in the formation of twofold increased amounts of FAD if compared to non IPTG-induced cells. Consumption of riboflavin substrate was also threefold greater in IPTG-induced lysate compared to non IPTG-induced cell extract. Thus, the recombinant MhpFADSyn protein could be associated to FAD biosynthesis. These findings contribute to expand the range of potential drug targets in diseases control and unveil metabolic pathways that could be attribute to mycoplasmas.


Assuntos
Mycoplasma hyopneumoniae/enzimologia , Nucleotidiltransferases/metabolismo , Escherichia coli/genética , Mycoplasma hyopneumoniae/classificação , Nucleotidiltransferases/genética , Filogenia , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Curr Gene Ther ; 21(5): 464-471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33573568

RESUMO

BACKGROUND: Mucopolysaccharidosis type I (MPS I) is an inherited disorder caused by α-L-iduronidase (IDUA) deficiency. The available treatments are not effective in improving all signs and symptoms of the disease. OBJECTIVE: In the present study, we evaluated the transfection efficiency of repeated intravenous administrations of cationic nanoemulsions associated with the plasmid pIDUA (containing IDUA gene). METHODS: Cationic nanoemulsions were composed of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(amino[polyethylene glycol]- 2000) (DSPE-PEG), 1,2-dioleoyl-sn-glycero-3-trimethylammonium propane (DOTAP), medium- chain triglycerides, glycerol, and water and were prepared by high-pressure homogenization and were repeatedly administered to MPS I mice for IDUA production and gene expression. RESULTS: A significant increase in IDUA expression was observed in all organs analyzed, and IDUA activity tended to increase with repeated administrations when compared to our previous report when mice received a single administration of the same dose. In addition, GAGs were partially cleared from organs, as assessed through biochemical and histological analyzes. There was no presence of inflammatory infiltrate, necrosis, or signs of an increase in apoptosis. Furthermore, immunohistochemistry for CD68 showed a reduced presence of macrophage cells in treated than in untreated MPS I mice. CONCLUSION: These sets of results suggest that repeated administrations can improve transfection efficiency of cationic complexes without a significant increase in toxicity in the MPS I murine model.


Assuntos
Mucopolissacaridose I , Animais , Terapia Genética , Iduronidase/genética , Camundongos , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Plasmídeos , Transfecção
9.
Hum Gene Ther ; 32(9-10): 495-505, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33632008

RESUMO

Hematopoietic stem cell transplantation has been studied for several decades now, mostly as a treatment for malignancies and hematological diseases but also for genetic metabolic disorders. Since many diseases that could be potentially treated with this approach develop early in life, studies of cell transplantation in newborn mice are needed, especially for gene therapy protocols. However, the small size of pups restricts the possibilities for routes of administration, and those available are normally technically challenging. Our goal was to test different routes of administration of Lin- cells in 2-day-old mice: intraperitoneal, intravenous through temporal vein (TV), and intravenous through retro-orbital (RO) sinus. Routes were evaluated by their easiness of execution and their influence in the biodistribution of cells in the short (48 h) and medium (30 days) term. In either 48 h or 30 days, all three routes presented similar results, with cells going mostly to bone marrow, liver, and spleen in roughly the same number. RO injection resulted in quick distribution of cells to the brain, suggesting better performance than the others. Rate of failure was higher for the TV route, which was also the hardest to execute, whereas the other two were considered easier. In conclusion, TV was the hardest to perform and all routes seemed to demonstrate similar results for cell biodistribution. In particular, the RO injection results in quicker biodistribution of cells to the brain, which is particularly important in the study of genetic metabolic disorders with a neurological component.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Animais , Animais Recém-Nascidos , Fígado/metabolismo , Camundongos , Baço , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA