Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Eng Sci ; 38(5): 389-401, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34079210

RESUMO

Individuals experiencing unsheltered homelessness face significant barriers to accessing water, sanitation, and hygiene services, but the risks associated with this lack of access and barriers to service provision have been largely understudied. We analyzed water samples upstream and downstream of three homeless encampments in the San Diego River watershed and interviewed service providers from public and nonprofit sectors to assess local perceptions about challenges and potential solutions for water and sanitation service provision in this context. Water upstream from encampments contained detectable levels of caffeine and sucralose. Escherichia coli concentrations downstream of the encampments were significantly greater than concentrations upstream, but there was no significant change in the concentrations of other pollutants, including caffeine and sucralose. The HF183 marker of Bacteroides was only detected in one sample upstream of an encampment and was not detected downstream. Overall, there was insufficient evidence to suggest that the encampments studied here were responsible for contributing pollution to the river. Nevertheless, the presence of caffeine, sucralose, and HF183 indicated that there are anthropogenic sources of contamination in the river during dry weather and potential risks associated with the use of this water by encampment residents. Interviews with service providers revealed perceptions that the provision of water and sanitation services for this population would be prohibitively expensive. Interviewees also reported perceptions that most riverbank residents avoided contact with service providers, which may present challenges for the provision of water and sanitation service unless trust is first built between service providers and residents of riverine encampments.

2.
Sci Total Environ ; 950: 175137, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39094642

RESUMO

Cross-border flow of untreated sewage from Mexico into the USA via the Tijuana River is public health issue with negative consequences for coastal communities. Here we evaluate the potential application of fluorescence-based, submersible tryptophan-like (TRP) and humic-like (CDOM) fluorescence sensors for real-time tracking of wastewater pollution in an estuarine environment. Sonde fluorescence measurements were compared with benchtop fluorescence, fecal indicator bacteria (FIB) concentrations, and real-time specific conductivity measurements in the Tijuana River Estuary during dry and wet weather conditions, and with and without cross-border flow. TRP and CDOM fluorescence concentrations were low during times without cross-border flow and two-three orders of magnitude higher during storm events and after cross-border sewage flow events. Major deterioration in water quality, including hypoxic conditions, was observed after consistent, long-term cross-border sewage flow. Real-time TRP and CDOM fluorescence concentrations had a significant linear relationship with fecal indicator bacteria (FIB) concentrations during dry weather periods with cross-border flow (p < 0.001) but were poorly correlated during stormflow and during less polluted periods with no cross-border flow. TRP and CDOM fluorescence acquired on discrete samples using a benchtop fluorometer correlated significantly (p < 0.001) with FIB concentrations under all cross-border flow conditions. Based on relationships between benchtop TRP fluorescence and percent wastewater, the greatest amount of untreated wastewater in the estuary's surface layer during cross-border flow events was estimated at >80 % and occurred during neap tides, when concentrated, sewage-laden freshwater flowed over dense saline seawater due to stratification and lack of mixing in the estuary. These results are important because exposure to untreated sewage poses severe health risks for residents and visitors to adjacent coastal areas. While benchtop fluorescence was more effective for estimating the degree of wastewater pollution, submersible TRP and CDOM sensors provided a real-time alert of sewage contamination, which can be utilized in other sewage impacted estuarine environments.


Assuntos
Monitoramento Ambiental , Estuários , Rios , Esgotos , Esgotos/análise , Monitoramento Ambiental/métodos , México , Rios/microbiologia , Rios/química , Estados Unidos , Fluorescência
3.
Sci Total Environ ; 811: 152379, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34914998

RESUMO

The chemical quality of dissolved organic matter (DOM) and the speciation of nitrogen exported from urban catchments is of great importance to biogeochemical cycling in riverine and coastal receiving waters. Many urban streams in Mediterranean climates have a flashy hydrologic regime, which would suggest a rapid pulsing and shunting of solutes downstream. However, the role of these systems both as passive pipes for solute transport or as reactors for DOM and nutrient transformation is still an open question for urban, Mediterranean streams. To address this question, we evaluated changes in concentrations of inorganic and organic solutes and DOM optical properties in Alvarado Creek, a perennially-flowing, urban, first-order tributary of the San Diego River in San Diego, CA, USA, during dry weather (baseflow) conditions and during four storm events in 2016-2018. Chloride and sulfate concentrations corroborate the supposed saline groundwater supply that maintains perennial flow and brackish nature in this urban stream. During dry weather, high proportions of protein-like fluorescent component (AC4) and downstream decreases in total dissolved nitrogen (TDN) and nitrate imply in-stream processing (nitrification and denitrification). By contrast, storm hysteresis curves indicate that the supply of DOM and TDN was not exhausted over the duration of a storm event, whereas nitrate was eventually depleted, presumably because nitrification could not keep up with the export of nitrate from source areas. Rapid decreases in chloride during the storm hydrograph coincided with a shift in specific ultraviolet absorbance (SUVA) and fluorescence index (FI) to more terrestrially-derived and aromatic carbon sources, most likely from interflow of stormwater through vadose zone soils. On an annual basis, the export of microbially-derived DOM during dry weather was higher than the export of terrestrially-derived DOM during storm events; both represent important carbon inputs to coastal waters.


Assuntos
Água Subterrânea , Água , Matéria Orgânica Dissolvida , Nutrientes , Rios
4.
Sci Total Environ ; 718: 137206, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325614

RESUMO

Fluorescence spectroscopy has been increasingly used to detect sewage and other anthropogenic contaminants in surface waters. Despite progress in successfully detecting bacterial and sewage inputs to rivers over diverse spatial scales, the use of fluorescence-based in-situ sensors to track contaminant inputs during storm events and to discern bacterial contamination from background natural organic matter (NOM) fluorescence have received less attention. A portable, submersible fluorometer equipped with tryptophan (TRP)-like and humic-like fluorescence sensors was used to track inputs of untreated wastewater added to natural creek water in a laboratory sewage spill simulation. Significant, positive correlations were observed between TRP fluorescence, the TRP:humic ratio, percent wastewater, and Escherichia coli concentrations, indicating that both the TRP sensor and the TRP:humic ratio tracked wastewater inputs against the background creek water DOM fluorescence. The portable fluorometer was subsequently deployed in an urban creek during a storm in 2018. The peak in TRP fluorescence was found to increase with the rising limb of the hydrograph and followed similar temporal dynamics to that of caffeine and fecal indicator bacteria, which are chemical and biological markers of potential fecal pollution. Results from this study demonstrate that tracking of TRP fluorescence intensity and TRP:humic ratios, with turbidity correction of sensor outputs, may be an appropriate warning tool for rapid monitoring of sewage or other bacterial inputs to aquatic environments.


Assuntos
Rios , California , Monitoramento Ambiental , Poluentes Ambientais , Esgotos , Espectrometria de Fluorescência , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA