Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 532: 118-127, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30077825

RESUMO

HYPOTHESIS: Vapor adsorption experiments are widely used to assess pore size distributions, but the large hysteresis sometimes observed between sorption and desorption isotherms remains difficult to interpret. Such hysteresis is influenced pore network connectivity, which has previously been modeled by percolation on infinite lattices. Our hypothesis is that percolation occurs instead through finite networks of micropores connecting accessible macropores, always exposed to the outside environment. THEORY: We derive a general formula for sorption/desorption isotherms that introduces a simple measure of hierarchical pore connectivity - the fraction of always exposed pores. The model thus accounts for "small world" connections in finite-size percolation, while also incorporating other hysteresis mechanisms, in single-pore filling, liquid insertion into the solid matrix, and cavitation. FINDINGS: Our formula is able to fit and interpret both primary and scanning sorption/desorption isotherms for a variety of adsorbates (noble gases, water, and organics) and porous materials (cement pastes, dental enamels, porous glasses, carbon black and nanotubes), including cases with broad pore-size distributions and large hysteresis. It allows quantification of the prevalence of percolating macropores in the material, even though these pores are never filled during the sorption experiments. A distinct bump in sorption isotherms is explained as a lowering of the barrier to nucleation of the vapor phase with a universal temperature scaling.

2.
Nat Commun ; 8: 15477, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28516913

RESUMO

Programmable stiff sheets with a single low-energy folding motion have been sought in fields ranging from the ancient art of origami to modern meta-materials research. Despite such attention, only two extreme classes of crease patterns are usually studied; special Miura-Ori-based zero-energy patterns, in which crease folding requires no sheet bending, and random patterns with high-energy folding, in which the sheet bends as much as creases fold. We present a physical approach that allows systematic exploration of the entire space of crease patterns as a function of the folding energy. Consequently, we uncover statistical results in origami, finding the entropy of crease patterns of given folding energy. Notably, we identify three classes of Mountain-Valley choices that have widely varying 'typical' folding energies. Our work opens up a wealth of experimentally relevant self-folding origami designs not reliant on Miura-Ori, the Kawasaki condition or any special symmetry in space.

3.
J Phys Condens Matter ; 28(49): 495102, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27731309

RESUMO

We examine the 'transmissibility' of a simulated two-dimensional pack of frictionless disks formed by confining dilute disks in a shrinking, periodic box to the point of mechanical stability. Two opposite boundaries are then removed, thus allowing a set of free motions. Small free displacements on one boundary then induce proportional displacements on the opposite boundary. Transmissibility is the ability to distinguish different perturbations by their distant responses. We assess transmissibility by successively identifying free orthonormal modes of motion that have the smallest distant responses. The last modes to be identified in this 'pessimistic' basis are the most transmissive. The transmitted amplitudes of these most transmissive modes fall off exponentially with mode number. Similar exponential falloff is seen in a simple elastic medium, though the responsible modes differ greatly in structure in the two systems. Thus the marginal pack's transmissibility is qualitatively similar to that of a simple elastic medium. We compare our results with recent findings based on the projection of the space of free motion onto interior sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA