Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 412(8): 1863-1870, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31975154

RESUMO

Hollow fibre-supported liquid membrane was used for Cu fractionation in marine waters, using di-2-pyridylketone benzoylhydrazone (dPKBH) as a carrier due to its capacity to transport dissolved inorganic Cu at natural seawater pH. Optimized conditions were dPKBH (0.5 mmol L-1), HNO3 (0.5 mol L-1) as acceptor agent, extraction time of 120 min and stirring speed of 800 rpm. Additionally, the selectivity of the method for the extraction of the inorganic Cu fraction was validated by comparing the experimental results with theoretical data, and a mathematical model was obtained for estimation of Cu linked to dissolved organic matter. The method was applied for the measurement of Cu fractions in real seawater samples. Results were successfully compared with the reference material BCR 403 and recovery analysis in waters from the Gulf of Cádiz, showing that it could be used as a simple approach for the study of different Cu fractions in marine waters. Graphical abstract.

2.
Anal Biochem ; 497: 18-23, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26723494

RESUMO

Trends in the analysis of trace metals in natural waters are mainly based on the development of sample treatment methods to isolate and pre-concentrate the metal from the matrix in a simpler extract for further instrumental analysis. However, direct analysis is often possible using more accessible techniques such as spectrophotometry. In this case a proper ligand is required to form a complex that absorbs radiation in the ultraviolet-visible (UV-Vis) spectrum. In this sense, the hydrazone derivative, di-2-pyridylketone benzoylhydrazone (dPKBH), forms complexes with copper (Cu) and vanadium (V) that absorb light at 370 and 395 nm, respectively. Although spectrophotometric methods are considered as time- and reagent-consuming, this work focused on its miniaturization by reducing the volume of sample as well as time and cost of analysis. In both methods, a micro-amount of sample is placed into a microplate reader with a capacity for 96 samples, which can be analyzed in times ranging from 5 to 10 min. The proposed methods have been optimized using a Box-Behnken design of experiments. For Cu determination, concentration of phosphate buffer solution at pH 8.33, masking agents (ammonium fluoride and sodium citrate), and dPKBH were optimized. For V analysis, sample (pH 4.5) was obtained using acetic acid/sodium acetate buffer, and masking agents were ammonium fluoride and 1,2-cyclohexanediaminetetraacetic acid. Under optimal conditions, both methods were applied to the analysis of certified reference materials TMDA-62 (lake water), LGC-6016 (estuarine water), and LGC-6019 (river water). In all cases, results proved the accuracy of the method.


Assuntos
Cobre/análise , Água Doce/análise , Espectrofotometria Ultravioleta/métodos , Vanádio/análise , Monitoramento Ambiental/métodos , Hidrazonas/química , Indicadores e Reagentes
3.
Membranes (Basel) ; 13(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36984714

RESUMO

Supported liquid membranes have been used to implement a hollow fibre liquid-phase microextraction (HF-LPME) method for the preconcentration of Cd(II) in natural waters as a sample preparation step for its determination by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). This system was designed to use four hollow fibres simultaneously with the same sample, thus improving the simplicity, speed and reproducibility of the results. The organic liquid membrane bis-(2,4,4-trimethylpentyl) phosphinic acid (Cyanex® 272) dissolved in dihexylether (DHE) was immobilised into the pores of the walls of polypropylene hollow fibres. After extraction, the cadmium-enriched acidic phases were recovered and analysed by triplicate. To optimise the extraction process, the effect of both physical and chemical variables was studied, and optimum results with an enrichment factor (EF) of 292 were obtained for a fibre length of 6 cm, 1.06 M Cyanex 272, 0.04 M HNO3, stirring rate of 600 rpm and an extraction time of 4.26 h. For practical applications, extraction time was reduced to 2 h, keeping the EF as high as 130. Under these conditions, a detection limit of 0.13 ng L-1 Cd(II) was obtained, with a reproducibility of 3.3 % and a linear range up to 3 µg L-1 being achieved. The proposed method was successfully applied to the determination of cadmium in mineral, tap and seawater samples.

4.
Membranes (Basel) ; 13(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36837655

RESUMO

Due to its important environmental role, the analysis of trace metals in natural waters is attracting increasing attention; consequently, faster and more accurate analytical methods are now needed to reach even lower limits of detection. In this work, we propose the use of electro-membrane extraction (EME) to improve analytical methods based on hollow fiber liquid phase micro-extraction (HFLPME). Specifically, an EME-based method for the determination of trace Ni in seawater has been developed, using an HFLPME system with di-2-ethylhexyl phosphoric acid (DEHPA) in kerosene as a chemical carrier, followed by instrumental determination by graphite furnace atomic absorption spectroscopy (GFAAS). Under optimum conditions, Ni was pre-concentrated 180 ± 17 times after 15 min, using sample pH = 5.5, the concentration of DEHPA 0.9 M in the liquid membranes, and 1.9 M HNO3 in the acceptor solution, as well as an electric potential of 25 V with the sample being stirred at 500 rpm. When compared with other HFLPME systems for pre-concentration of trace Ni in seawater in the absence of electric potential, the enrichment factor was improved 2.2 times, while the time of extraction was reduced an 89%. The limit of detection of the new method was 23.3 ng L-1, and both its applicability and accuracy were successfully evaluated by analyzing Ni concentration in a seawater-certified reference material (BCR-403), showing the reliability of EME for sample preparation in the determination of trace metals in marine water samples.

5.
Membranes (Basel) ; 10(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027973

RESUMO

Popularity of hollow fiber-supported liquid membranes (HF-SLM) for liquid-phase microextraction (HF-LPME) has increased in the last decades. In particular, HF-SLM are applied for sample treatment in the determination and speciation of metals. Up to the date, optimization of preconcentration systems has been focused on chemical conditions. However, criteria about fiber selection are not reflected in published works. HFs differ in pore size, porosity, wall thickness, etc., which can affect efficiency and/or selectivity of chemical systems in extraction of metals. In this work, Ag+ transport using tri-isobutylphosphine sulfide (TIBPS) has been used as a model to evaluate differences in metal transport due to the properties of three different fibers. Accurel PP 50/280 fibers, with a higher effective surface and smaller wall thickness, showed the highest efficiency for metal transport. Accurel PP Q3/2 exhibited intermediate efficiency but easier handling and, finally, Accurel PP S6/2 fibers, with a higher wall thickness, offered poorer efficiency but the highest stability and capability for metal speciation. Summarizing, selection of the polymeric support of HF-SLM is a key factor in their applicability of LPME for metals in natural waters.

6.
Talanta ; 142: 84-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26003695

RESUMO

During the last decade, hollow fiber liquid phase micro-extraction (HF-LPME) has become an attractive alternative in sample treatment for the analysis of trace metals in seawater. If compared with other similar methodologies, its main advantages are associated to a higher stability of the organic solution contained into the pores of the fiber, which acts as a lipophilic membrane during the extraction process. However there are some remaining problems that makes its use difficult, mostly related to the need of increasing the rate of analysis and improving portability. In this paper a novel three phase solvent bar micro-extraction (3PSBME) for the fiber device has been proposed. Its main advantage is that the 3PSBME device can be left free in the sample. This way the system is portable, and no special support is needed leading to the possibility of simultaneous extraction of several samples. In this work, multivariate central composite design of experiment has been carried out to optimize Ni pre-concentration using di-2-ethylhexyl phosphoric acid (DEHPA) as extractant and HNO3 as acceptor agent. Factors influencing extraction have been the pH in the sample and the fiber length. For seawater samples, Ni can be pre-concentrated 11 times in 140 min. The method presents RSD 9.42% and limit of detection 44 ng L(-1), using GFAAS for instrumental determination. It has been applied for determination of Ni in seawater, including a reference material CRM-403 proving its applicability.

7.
Talanta ; 103: 161-5, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23200372

RESUMO

A bulk liquid membrane-flow injection (BLM-FI) system has been developed for the preconcentration and spectrophotometric determination of vanadium in saline waters. The preconcentration step was based on a bulk liquid membrane containing Aliquat 336 (acting as a carrier) dissolved in dodecane/dodecanol. Vanadium species were chemically pumped due to the pH gradient between the sample (pH 3.2) and the receiving solution (pH 9.8). Vanadium transport through the membrane was monitored by a new and sensitive spectrophotometric method based on its reaction with di-2-pyridyl ketone benzoylhydrazone (dPKBH) in an acidic medium. As a consequence of membrane transport, vanadium was recovered in an ammonium solution, where total vanadium concentration was spectrophotometrically determined at 375 nm, as the pentavalent species, by using a flow injection analysis (FIA) system. Under optimal conditions, this FIA system provided a detection limit of 4.7 µg L(-1) (3s(blank)/m) and RSD 2.72%, for vanadium determination in saline samples. Both preconcentration and determination steps were previously optimized by modified simplex methodologies. The proposed coupled method was successfully applied to the determination of vanadium in a certified reference material (TMDA-62) and in two seawater samples.


Assuntos
Análise de Injeção de Fluxo , Membranas Artificiais , Água do Mar/análise , Vanádio/análise , Corantes/química , Hidrazonas/química , Limite de Detecção , Piridinas/química , Compostos de Amônio Quaternário/química
8.
Talanta ; 64(2): 562-5, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18969641

RESUMO

A very sensitive flow injection method with spectrophotometric detection has been developed for the on-line determination of copper in natural waters. The method exhibits a limit of detection three times lower than the most sensitive direct spectrophotometric method previously described and then allows the direct and simple in situ determination of copper in most natural waters. The method was based on the measurement of the absorbance of the coloured complex formed by copper with the chromogenic reagent di-2-pyridyl ketone benzoylhydrazone (dPKBH) in an alkaline medium. This complex presents stoichiometry 1:2 (Cu:dPKBH), and exhibits maximum absorbance at 370nm. The manifold used was very simple, and consisted of two channels. The first one contained the sample while the second one contained the colorimetric reagent (3.3x10(-4)M dPKBH in 10% ethanol), in a 1.6x10(-2)M phosphate buffer solution at pH 8. The performance of the system was optimised by using both univariate and modified simplex methodologies. When modified simplex was used, the best signal was obtained for a sample injection volume of 529mul, a reaction coil length of 1.29m, and a reagent flow rate of 4.8mlmin(-1). Under optimum conditions, the response was linear up to 3mgl(-1) copper, the equation of the straight line being y=0.314x+5.2x10(-4) (r(2)=0.998). The method allowed a sampling frequency of 40 samples per hour and exhibited a precision of 2.11% (as R.S.D., n=11). The limit of detection was 4.6mugl(-1) (calculated as 3s(b)/m, where s(b) is the standard deviation of the y-intercept and m represents the slope of the straight line), and was therefore more sensitive than all the direct continuous methods reported previously. The method was successfully applied to the analysis of real water samples, with an average relative error of 5.32%.

9.
Anal Bioanal Chem ; 373(8): 844-8, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12194048

RESUMO

A sensitive spectrophotometric method for the direct determination of copper in aqueous samples without a preconcentration step has been developed. It is based on the formation of a yellow complex with the chromogenic reagent di-2-pyridyl ketone benzoylhydrazone (dPKBH) in an alkaline medium. The complex stoichiometry was 1:2 (Cu:dPKBH) and presents maximum absorbance at 370 nm. The influence of chemical variables affecting the behaviour of the system such as pH, concentration of dPKBH, buffer solution and ethanol, order of addition of the reagents and stability of the complex, were evaluated. The molar absorptivity (epsilon) was 3.92x10(4) L mol(-1) cm(-1), and Beer's law was obeyed up to 3 mg L(-1) of copper. The relative standard deviation was 0.46% (n=11) for a sample containing 1 mg L(-1) Cu(II). The limit of detection was 2.5 micro g L(-1) and was therefore more sensitive than the direct methods reported previously. Finally, the method was successfully validated by analysing several real samples with different matrices, such as tap water, natural water or copper alloys, with an average relative error of 2.46%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA