Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Pharm Res ; 38(2): 335-346, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33604784

RESUMO

PURPOSE: Melanoma is an invasive and very aggressive skin cancer due to its multi-drug resistance that results in poor patient survival. There is a need to test new treatment approaches to improve therapeutic efficacy and reduce side effects of conventional treatments. METHODS: PLA/PVA nanoparticles carrying both Dacarbazine and zinc phthalocyanine was produced by double emulsion technique. The characterization was performed by dynamic light scattering and atomic force microscopy. In vitro photodynamic therapy test assay using MV3 melanoma cells as a model has been performed. In vitro cell viability (MTT) was performed to measure cell toxicity of of nanoparticles with and without drugs using human endothelial cells as a model. The in vivo assay (biodistribution/tissue deposition) has been performed using radiolabeled PLA/PVA NPs. RESULTS: The nanoparticles produced showed a mean diameter of about 259 nm with a spherical shape. The in-vitro photodynamic therapy tests demonstrated that the combination is critical to enhance the therapeutic efficacy and it is dose dependent. The in vitro cell toxicity assay using endothelial cells demonstrated that the drug encapsulated into nanoparticles had no significant toxicity compared to control samples. In-vivo results demonstrated that the drug loading affects the biodistribution of the nanoparticle formulations (NPs). Low accumulation of the NPs into the stomach, heart, brain, and kidneys suggested that common side effects of Dacarbazine could be reduced. CONCLUSION: This work reports a robust nanoparticle formulation with the objective to leveraging the synergistic effects of chemo and photodynamic therapies to potentially suppressing the drug resistance and reducing side effects associated with Dacarbazine. The data corroborates that the dual encapsulated NPs showed better in-vitro efficacy when compared with the both compounds alone. The results support the need to have a dual modality NP formulation for melanoma therapy by combining chemotherapy and photodynamic therapy.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Portadores de Fármacos/química , Melanoma/tratamento farmacológico , Fármacos Fotossensibilizantes/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos Alquilantes/efeitos adversos , Antineoplásicos Alquilantes/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular , Dacarbazina/administração & dosagem , Dacarbazina/farmacocinética , Composição de Medicamentos/métodos , Células Endoteliais , Humanos , Isoindóis/administração & dosagem , Isoindóis/farmacocinética , Masculino , Melanoma/patologia , Camundongos , Nanopartículas/química , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/farmacocinética , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacocinética , Poliésteres/química , Álcool de Polivinil/química , Neoplasias Cutâneas/patologia , Distribuição Tecidual , Compostos de Zinco/administração & dosagem , Compostos de Zinco/farmacocinética
2.
Pharm Res ; 37(3): 40, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31970499

RESUMO

PURPOSES: Senescence is an inevitable and irreversible process, which may lead to loss in muscle and bone density, decline in brain volume and loss in renal clearance. Although aging is a well-known process, few studies on the consumption of nanodrugs by elderly people were performed. METHODS: We evaluated three different nanosystems: i) carbon based nanosystem (Graphene Quantum Dots, GQD), ii) polymeric nanoparticles and mesoporous silica (magnetic core mesoporous silica, MMSN). In previous studies, our group has already characterized GQD and MMSN nanoparticles by dynamic light scattering analysis, atomic force microscopy, transmission electron microscopy, X-ray diffraction, Raman analysis, fluorescence and absorbance. The polymeric nanoparticle has been characterized by AFM and DLS. All the nanosystems were radiolabeled with 99 m-Tc by. The in vivo biodistribution/tissue deposition analysis evaluation was done using elder (PN270) and young (PN90) mice injected with radioactive nanosystems. RESULTS: The nanosystems used in this study were well-formed as the radiolabeling processes were stable. Biodistribution analysis showed that there is a decrease in the uptake of the nanoparticles in elder mice when compared to young mice, showing that is necessary to increase the initial dose in elder people to achieve the same concentration when compared to young animals. CONCLUSION: The discrepancy on tissue distribution of nanosystems between young and elder individuals must be monitored, as the therapeutic effect will be different in the groups. Noteworthy, this data is an alarm that some specific conditions must be evaluated before commercialization of nano-drugs. Graphical Abstract Changes between younger and elderly individuals are undoubtedly, especially in drug tissue deposition, biodistribution and pharmacokinetics. The same thought should be applied to nanoparticles. A comprehensive analysis on how age discrepancy change the biological behavior of nanoparticles has been performed.


Assuntos
Grafite/química , Nanopartículas/química , Nanopartículas/metabolismo , Poliésteres/química , Dióxido de Silício/química , Fatores Etários , Animais , Marcação por Isótopo , Nanopartículas de Magnetita/química , Camundongos , Modelos Animais , Nanopartículas/administração & dosagem , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Tecnécio/química , Distribuição Tecidual
3.
Pharm Res ; 36(10): 143, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31385111

RESUMO

PURPOSE: Pancreatic Polypeptide-secreting tumor of the distal pancreas (PPoma) is a rare, difficult and indolent type of cancer with a survival rate of 5-year in only 10% of all cases. The PPoma is classified as a neuroendocrine tumor (NET) not functioning that overexpresses SSTR 2 (somatostatin receptor subtype 2). Thus, in order to improve the diagnosis of this type of tumor, we developed nanoparticulate drug carriers based on poly-lactic acid (PLA) polymer loaded with octreotide and radiolabeled with Technetium-99 m (99mTc). METHODS: PLA/PVA octreotide nanoparticles were developed by double-emulsion technique. These nanoparticles were characterized by Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) and radiolabeled with 99mTc by the direct via forming 99mTc-PLA/PVA octreotide nanoparticles. The safety of these nanosystems was evaluated by the MTT cell toxicity assay and their in vivo biodistribution was evaluated in xenografted inducted animals. RESULTS: The results showed that a 189 nm sized nanoparticle were formed with a PDI of 0,097, corroborating the monodispersive behavior. These nanoparticles were successfully radiolabeled with 99mTc showing uptake by the inducted tumor. The MTT assay corroborated the safety of the nanosystem for the cells. CONCLUSION: The results support the use of this nanosystem (99mTc-PLA/PVA octreotide nanoparticles) as imaging agent for PPoma. Graphical Abstract Polypeptide-Secreting Tumor of the Distal Pancreas (PPoma) Radiolabeled Nanoparticles for Imaging.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico por imagem , Nanopartículas/química , Octreotida/química , Neoplasias Pancreáticas/diagnóstico por imagem , Polipeptídeo Pancreático/metabolismo , Poliésteres/química , Compostos Radiofarmacêuticos/química , Tecnécio/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/metabolismo , Octreotida/metabolismo , Pâncreas/diagnóstico por imagem , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Tamanho da Partícula , Cintilografia/métodos , Compostos Radiofarmacêuticos/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Distribuição Tecidual , Neoplasias Pancreáticas
4.
J Nanostructure Chem ; 13(2): 263-281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35251554

RESUMO

The outbreak of coronavirus (COVID-19) has put the world in an unprecedented scenario. To reestablish the world routine as promote the effective treatment of this disease, the world is looking for new (and old) drug that can efficiently kill the virus. In this study, we have developed two nanosystems: polymeric nanoparticles and nanomicelles-based on hydroxychloroquine and azithromycin. The nanosystem was fully characterized by AFM and DLS techniques. Also, the nanosystems were radiolabeled with 99mTc and pulmonary applied (installation) in vivo to evaluate the biological behavior. The toxicity of both nanosystem were evaluated in primary cells (FGH). Finally, both nanosystems were evaluated in vitro against the SARS-CoV-2. The results demonstrated that the methodology used to produce the nanomicelles and the nanoparticle was efficient, the characterization showed a nanoparticle with a spherical shape and a medium size of 390 nm and a nanomicelle also with a spherical shape and a medium size of 602 nm. The nanomicelles were more efficient (~ 70%) against SARS-CoV-2 than the nanoparticles. The radiolabeling process with 99mTc was efficient (> 95%) in both nanosystems and the pulmonary application demonstrated to be a viable route for both nanosystems with a local retention time of approximately, 24 h. None of the nanosystems showed cytotoxic effect on FGH cells, even in high doses, corroborating the safety of both nanosystems. Thus, claiming the benefits of the nanotechnology, especially with regard the reduced adverse we believe that the use of nanosystems for COVID-19 treatment can be an optimized choice. Supplementary Information: The online version contains supplementary material available at 10.1007/s40097-022-00476-3.

5.
Photodiagnosis Photodyn Ther ; 39: 102896, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35525432

RESUMO

Phthalocyanines are photosensitizers activated by light at a specific wavelength in the presence of oxygen and act through the production of Reactive Oxygen Species, which simultaneously attack several biomolecular targets in the pathogen agent and, therefore, have multiple and variable action sites. This nonspecific action site bypasses conventional resistance mechanisms. Antimicrobial Photodynamic Therapy (aPDT) is safe, easy to implement and, unlike conventional agents, may have a wide activity spectrum of photoantimicrobials. This work is a systematic review of the literature based on nanocarriers containing phthalocyanines in aPDT against bacteria, fungi, viruses, and protozoa. The search was performed in two different databases (MEDLINE/PubMed and Web of Science) between 2011 and May 2021. Nanocarriers often improve the action or are equivalent to free drugs, but their use allows substituting the organic solvent in the case of hydrophobic phthalocyanines, allowing for a safer application of aPDT with the possibility of prolonged release. In the case of hydrophilic phthalocyanines, they would allow for nonspecific site delivery with a possibility of cellular internalization. A single infectious lesion can have multiple microorganisms, and PDT with phthalocyanines is an interesting treatment given its ample spectrum of action. It is possible to highlight the upconversion nanosystems, which allow for the activation of phthalocyanine in deeper tissues by using longer wavelengths, as a system that has not yet been studied, but which could provide treatment solutions. The use of nanocarriers containing phthalocyanines requires more study to establish the use of aPDT in humans.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Humanos , Indóis/química , Indóis/farmacologia , Isoindóis , Nanotecnologia , Preparações Farmacêuticas , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico
6.
Colloids Surf B Biointerfaces ; 211: 112280, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34902784

RESUMO

Aptamers may form well-defined three-dimensional structures binding with high affinity and stability to a specific receptor. The aptamer anti-MUC1 isoform Y is one the most used due the affinity to MUC1, which is overexpressed in several types of cancer and inflammation process. In this study we have developed, characterized, in vitro as in vivo evaluated a nanoaptamer (anti-MUC1/Y) as a nanoagent for rheumatoid arthritis treatment. The results showed that a nanoaptamer with a size range of 241 nm was produced. The entrapment efficacy was 90% with a biodistribution showing a high hepatic uptake (>98%). The results in vivo showed a potent effect in arthritis experimental model, especially in low doses. The results corroborate the applicability of this nanosystem for RA treatment.


Assuntos
Aptâmeros de Nucleotídeos , Artrite , Nanopartículas , Aptâmeros de Nucleotídeos/química , Humanos , Mucina-1/química , Nanopartículas/química , Distribuição Tecidual
7.
Mater Sci Eng C Mater Biol Appl ; 102: 405-414, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31147011

RESUMO

Graphene is one of the crystalline forms of carbon, along with diamond, graphite, carbon nanotubes, and fullerenes, and is considered as a revolutionary and innovating product. The use of a graphene-based nanolabels is one of the latest and most prominent application of graphene, especially in the field of diagnosis and, recently, in loco radiotherapy when coupled with radioisotopes. However, its biological behavior and mutagenicity in different cell or animal models, as well as the in vivo functional activities, are still unrevealed. In this study we have developed by a green route of synthesizing graphene quantum dots (GQDs) and characterized them. We have also developed a methodology for direct radiolabeling of GQDs with radioisotopes.Finally; we have evaluated in vivo biological behavior of GQDs using two different mice models and tested in vitro mutagenicity of GQDs. The results have shown that GQDs were formed with a size range of 160-280 nm, which was confirmed by DRX and Raman spectroscopy analysis, corroborating that the green synthesis is an alternative, environmentally friendly way to produce graphene. The radiolabeling test has shown that stable radiolabeled GQDs can be produced with a high yield (>90%). The in vivo test has demonstrated a ubiquitous behavior when administered to healthy animals, with a high uptake by liver (>26%) and small intestine (>25%). Otherwise, in an inflammation/VEGF hyperexpression animal model (endometriosis), a very peculiar behavior of GQDs was observed, with a high uptake by kidneys (over 85%). The mutagenicity test has demonstrated A:T to G:C substitutions suggesting that GQDs exhibits mutagenic activity.


Assuntos
Grafite/química , Química Verde/métodos , Mutagênicos/toxicidade , Pontos Quânticos/química , Compostos Radiofarmacêuticos/química , Tecnécio/química , Animais , Difusão Dinâmica da Luz , Feminino , Masculino , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica , Fenômenos Ópticos , Tamanho da Partícula , Ratos Wistar , Análise Espectral Raman , Distribuição Tecidual , Difração de Raios X
8.
Artif Cells Nanomed Biotechnol ; 46(sup2): 527-538, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29688037

RESUMO

Whether in the cosmetic or as therapeutic, the use of nanoparticles has been increasing and taking on global proportion. However, there are few studies about the physical potential of long-term use or use in special conditions such as chronic, AIDS, pregnant women and other special health circumstances. In this context, the study of the mutagenicity and the transplacental passage represents an important and reliable model for the primary evaluation of potential health risks, especially maternal and child health. In this study we performed mutagenicity, cytotoxic and transplacental evaluation of magnetic core mesoporous silica nanoparticles, radiolabeled with 99mTc for determination of toxicogenic and embryonic/fetuses potential risk in animal model. Magnetic core mesoporous silica nanoparticles were produced and characterized by obtaining nanoparticles with a size of (58.9 ± 8.1 nm) in spherical shape and with intact magnetic core. The 99 m Tc radiolabeling process demonstrated high efficacy and stability in 98% yield over a period of 8 hours of stability. Mutagenicity assays were performed using Salmonella enteric serovar Typhimurium standard strains TA98, TA100 and TA102. Cytotoxicity assays were performed using WST-1. The transplacental evaluation assays were performed using the in vivo model with rats in two periods: embryonic and fetal stage. The results of both analyzes corroborate that the nanoparticles can i) generate DNA damage; ii) generate cytotoxic potential and iii) cross the transplantation barrier in both stages and bioaccumulates in both embryos and fetuses. The results suggest that complementary evaluations should be conducted in order to attest safety, efficacy and quality of nanoparticles before unrestricted approval of their use.


Assuntos
Fenômenos Magnéticos , Nanopartículas , Placenta/metabolismo , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Animais , Transporte Biológico , Citotoxinas/química , Citotoxinas/metabolismo , Citotoxinas/toxicidade , Dano ao DNA , Feminino , Células Hep G2 , Humanos , Mutagênicos/química , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Porosidade , Gravidez , Ratos , Ratos Wistar , Dióxido de Silício/metabolismo , Fatores de Tempo
9.
J Glob Antimicrob Resist ; 13: 139-142, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29196220

RESUMO

OBJECTIVES: Treatment of leishmaniasis remains a challenge, especially due to the need for multiple painful injections, the toxicity of current drugs against the disease, their lack of efficacy and, lately, drug resistance. The aim of this study was to demonstrate the biological behaviour of 3-nitro-2'-hydroxy-4',6'-dimethoxychalcone (CH8) in a murine model of cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL). METHODS: To evaluate its biological behaviour, compound CH8 was radiolabelled with technetium-99m (99mTc) using the direct reaction. Groups of animals infected with ether Leishmania infantum (as a model for VL) or Leishmania amazonensis (as a model for CL) were administered CH8-99mTc orally or subcutaneously, respectively, and its biodistribution was evaluated. RESULTS: Oral administration of CH8-99mTc resulted in poor absorption. However, the absorbed drug was expressively taken up in the blood and liver, the main organ infected in VL. CH8-99mTc administered by the subcutaneous route showed a poor distribution and significant uptake in the left ear, suggesting a local effect in the skin. In addition, the VL and CL infection models did not considerably alter the biodistribution profile by the oral and subcutaneous routes, respectively. CONCLUSION: These results suggest that CH8 is a promising candidate for oral treatment of VL and for intralesional treatment of CL, showing a prominent local effect.


Assuntos
Chalconas/farmacocinética , Leishmania infantum/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Radioisótopos , Pentetato de Tecnécio Tc 99m , Distribuição Tecidual
10.
Artif Cells Nanomed Biotechnol ; 46(2): 341-345, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28355888

RESUMO

The diagnosis of lung cancer mostly occurs when the cancer is already in an advanced stage. In this situation, there are few options for the treatment and most of them have few chances of success. In this study, we developed and tested etoposide microparticles as a diagnostic agent for imaging lung cancer at early stages of development. We tested etoposide microparticles labeled with technetium 99m in inducted mice. The results demonstrated that over 10% of the total dose used was uptake by the tumor site. Also, the results showed that the microparticles had a good renal clearance and low uptake by liver and spleen. The data suggest that these micro-radiopharmaceuticals may be used for lung cancer imaging exam, especially single-photo emission computed tomography (SPECT).[Formula: see text].


Assuntos
Etoposídeo/química , Neoplasias Pulmonares/diagnóstico por imagem , Microesferas , Tecnécio/química , Tomografia Computadorizada de Emissão de Fóton Único , Células A549 , Animais , Etoposídeo/farmacocinética , Humanos , Marcação por Isótopo , Masculino , Camundongos
11.
Artif Cells Nanomed Biotechnol ; 46(sup1): 1080-1087, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29482360

RESUMO

Cancer is responsible for more than 12% of all causes of death in the world, with an annual death rate of more than 7 million people. In this scenario melanoma is one of the most aggressive ones with serious limitation in early detection and therapy. In this direction we developed, characterized and tested in vivo a new drug delivery system based on magnetic core-mesoporous silica nanoparticle that has been doped with dacarbazine and labelled with technetium 99 m to be used as nano-imaging agent (nanoradiopharmaceutical) for early and differential diagnosis and melanoma by single photon emission computed tomography. The results demonstrated the ability of the magnetic core-mesoporous silica to be efficiently (>98%) doped with dacarbazine and also efficiently labelled with 99mTc (technetium 99 m) (>99%). The in vivo test, using inducted mice with melanoma, demonstrated the EPR effect of the magnetic core-mesoporous silica nanoparticles doped with dacarbazine and labelled with technetium 99 metastable when injected intratumorally and the possibility to be used as systemic injection too. In both cases, magnetic core-mesoporous silica nanoparticles doped with dacarbazine and labelled with technetium 99 metastable showed to be a reliable and efficient nano-imaging agent for melanoma.


Assuntos
Dacarbazina/química , Imãs/química , Melanoma/diagnóstico por imagem , Nanopartículas/química , Dióxido de Silício/química , Tecnécio/química , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Diagnóstico Diferencial , Detecção Precoce de Câncer , Humanos , Marcação por Isótopo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Porosidade
12.
Ther Innov Regul Sci ; 52(1): 109-113, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714615

RESUMO

Adverse reactions to radiopharmaceuticals are still not reported worldwide. However, the type of reaction may be severe and cause death. A review of the literature was performed using some criteria of a systematic review established by the Cochrane Collaboration. The results showed that there are a large number of adverse reactions to radiopharmaceuticals. Nuclear medicine staff must be aware of the possibility of adverse reaction with radiopharmaceuticals and find time to share this information with the radiopharmacist and the national pharmacovigilance system.


Assuntos
Compostos Radiofarmacêuticos/efeitos adversos , Interações Medicamentosas , Humanos , Inquéritos e Questionários
13.
Artif Cells Nanomed Biotechnol ; 46(sup3): S725-S733, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30449175

RESUMO

Breast cancer is women's most common type of cancer, with a global rate of over 522,000 deaths per year. One of the main problems related to breast cancer relies in the early detection, as the specialized treatment. In this direction was developed, characterized and tested in vivo a smart delivery system, based on radiolabelled magnetic core mesoporous silica doped with trastuzumab as intralesional nanodrug for breast cancer imaging and possible therapy. The results showed that nanoparticles had a size of 58.9 ± 8.1 nm, with specific surface area of 872 m2/g and pore volume of 0.85 cm3/g with a pore diameter of 3.15 nm. The magnetic core mesoporous silica was efficiently labelled with 99mTc (97.5% ±0.8) and doped >98%. The cytotoxicity assay, demonstrated they are safe to use. The data were corroborated with the IC50 result of: 829.6 µg ± 43.2. The biodistribution showed an uptake by the tumour of 7.5% (systemic via) and 97.37% (intralesional) with less than 3% of these nanoparticles absorbed by healthy tissues. In a period 6-h post-injection, no barrier delimited by the tumour was crossed, corroborating the use as intralesional nanodrug.


Assuntos
Portadores de Fármacos , Nanopartículas , Dióxido de Silício , Trastuzumab , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Tamanho da Partícula , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Distribuição Tecidual , Trastuzumab/química , Trastuzumab/farmacocinética , Trastuzumab/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Appl Radiat Isot ; 112: 27-30, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26986812

RESUMO

Radioisotope holmium is a candidate to be used in cancer treatment and diagnosis. There are different holmium salts and they present distinct solubility and consequently different biodistribution profiles. In this work, we aimed to evaluate the biodistribution profiles of two holmium salts (chloride and sulfate) and holmium nanoparticles (oxide) through an in vivo biodistribution assay using animal model. Samples were labeled with technetium-99m and administered in Wistar rats by retro-orbital route. Holmium chloride is highly soluble in water and it was quickly filtered by the kidneys while holmium sulfate that presents lower solubility in water was mainly found in the liver and the spleen. However, both the salts showed a similar biodistribution profile. On the other hand, holmium oxide showed a very different biodistribution profile since it seemed to interact with all organs. Due to its particle size range (approximately 100nm) it was not intensively filtered by the kidneys being found in high quantities in many organs, for this reason its use as a nanoradiopharmaceutical could be promising in the oncology field.


Assuntos
Hólmio/farmacocinética , Radioisótopos/farmacocinética , Animais , Hólmio/química , Masculino , Nanopartículas Metálicas/química , Radioisótopos/química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Wistar , Tecnécio/química , Tecnécio/farmacocinética , Distribuição Tecidual
15.
Nucl Med Biol ; 41(9): 772-4, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25027865

RESUMO

The use of in vivo assay to determine the biodistribution and subsequent inter-comparison with human parameters has been used since the dawn of science. The use of this type of test admits the metabolic equity among animals for inter-comparison. Thus, the use of Wistar rats in particular is quite frequent. Regarding routes of administration, there are three ways to test priority: jugular vein, intraocular (eye plexus) and caudal; there is a consensus that these three pathways behave in the same way, or at least very similar. Biodistribution studies of drugs, especially radiopharmaceuticals, have been using randomly any of these pathways believed to be effective in their likeness without worrying about your real analytic equity. In this study, we performed in vivo assay in 8 Wistar rats using 99mTc -labeled Herceptin to review the route of administration on the biodistribution result. Thus, four mice were injected via the intraocular (eye plexus), and four were injected via tail (caudal plexus). The results were quite disparate and call the attention of the scientific community to reassess the protocols for animal experiments, in order to have uniformity and fairness between the data and may represent a test for human inter-comparison of more reliable and trustworthy way.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacocinética , Bioensaio/métodos , Tecnécio/administração & dosagem , Tecnécio/farmacocinética , Animais , Feminino , Masculino , Taxa de Depuração Metabólica , Especificidade de Órgãos , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Wistar , Distribuição Tecidual , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA