Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Appl Microbiol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38925659

RESUMO

AIMS: This study aimed to prospect and isolate LAB from an artisanal cheese production environment, to assess their safety, and to explore their bacteriocinogenic potential against Listeria monocytogenes. METHODS AND RESULTS: Samples were collected from surfaces of an artisanal-cheese production facility and after rep-PCR and 16S rRNA sequencing analysis, selected strains were identified to be belonging to Lactococcus garvieae (1 strain) and Enterococcus faecium (14 isolates, grouped into 3 clusters) associated with different environments (worktables, cheese mold, ripening wooden shelves). All of them presented bacteriocinogenic potential against L. monocytogenes ATCC 7644 and were confirmed as safe (γ-hemolytic, not presenting antibiotic resistance, no mucus degradation properties and no proteolytic or gelatinase enzyme activity). Additionally, cell growth, acidification and bacteriocins production kinetics, bacteriocin stability in relation to different temperatures, pH and chemicals were evaluated. According to performed PCR all studied strains generated positive evidence for presence of entA and entP genes (for production of enterocins A and enterocins P, respectively). However, pediocin PA-1 associated gene were recorded only DNA from E. faecium ST02JL and Lc. garvieae ST04JL. CONCLUSIONS: It is worth considering the application of these safe LAB or their bacteriocins in situ as an alternative means of controlling L. monocytogenes in cheese production environments alone or in combination with other antimicrobials.

2.
Mol Divers ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658910

RESUMO

Listeria monocytogenes is an important human and animal pathogen able to cause an infection named listeriosis and is mainly transmitted through contaminated food. Among its virulence traits, the ability to form biofilms and to survive in harsh environments stand out and lead to the persistence of L. monocytogenes for long periods in food processing environments. Virulence and biofilm formation are phenotypes regulated by quorum sensing (QS) and, therefore, the control of L. monocytogenes through an anti-QS strategy is promising. This study aimed to identify, by in silico approaches, proteins secreted by lactic acid bacteria (LAB) potentially able to interfere with the agr QS system of L. monocytogenes. The genome mining of Lacticaseibacillus rhamnosus GG and Lactobacillus acidophilus NCFM revealed 151 predicted secreted proteins. Concomitantly, the three-dimensional (3D) structures of AgrB and AgrC proteins of L. monocytogenes were modeled and validated, and their active sites were predicted. Through protein-protein docking and molecular dynamic, Serine-type D-Ala-D-Ala carboxypeptidase and L,D-transpeptidase, potentially secreted by L. rhamnosus GG and L. acidophilus NCFM, respectively, were identified with high affinity to AgrB and AgrC proteins, respectively. By inhibiting the translocation of the cyclic autoinducer peptide (cyclic AIP) via AgrB, and its recognition in the active site of AgrC, these LAB proteins could disrupt L. monocytogenes communication by impairing the agr QS system. The application of the QS inhibitors predicted in this study can emerge as a promising strategy in controlling L. monocytogenes in food processing environment and as an adjunct to antibiotic therapy for the treatment of listeriosis.

3.
Arch Microbiol ; 203(9): 5491-5507, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34417652

RESUMO

Chromobacterium violaceum is a Gram-negative, saprophytic bacterium that can infect humans and its virulence may be regulated by quorum sensing via N-acyl homoserine lactones. A virtual screening study with plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of C. violaceum quorum sensing system has been performed. In vitro evaluation was done to validate the in silico results. Molecular docking showed that phytol, margaric acid, palmitic acid, dipyrone, ketoprofen, and phenylbutazone bound to structures of CviR proteins of different C. violaceum strains. Phytol presented higher binding affinities than AHLs and furanones, recognized inducers, and inhibitors of quorum sensing, respectively. When tested in vitro, phytol at a non-inhibitory concentration was the most efficient tested compound to reduce phenotypes regulated by quorum sensing. The results indicate that in silico compound prospection to inhibit quorum sensing may be a good tool for finding alternative lead molecules.


Assuntos
Anti-Inflamatórios , Chromobacterium , Extratos Vegetais , Percepção de Quorum , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Chromobacterium/efeitos dos fármacos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia
4.
Biofouling ; 36(9): 1031-1048, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33187450

RESUMO

Serratia liquefaciens is a spoilage microorganism of relevance in the dairy industry because it is psychrotrophic, able to form biofilm, and produces thermoresistant proteases and lipases. Phenolic compounds and furanones have been studied as inhibitors of biofilm formation. In this study, the potential of the pulp phenolic extract of Eugenia uniflora L. orange fruits, also called pitanga, and furanone C30 on the inhibition of biofilm formation by S. liquefaciens L53 and the susceptibility to different antimicrobials were evaluated. The pulp phenolic extract of pitanga had a high total phenolic content, being mainly composed of glycosylated quercetins and ellagitannins. Sub-inhibitory concentrations of this extract and furanone reduced biofilm formation by S. liquefaciens on polystyrene and the amount of polysaccharides, proteins and extracellular DNA in the biofilms. These biofilms were also more susceptible to kanamycin. The combinations of furanone with phenolic extract of pitanga or kanamycin showed a synergistic effect with total growth inhibition of S. liquefaciens.


Assuntos
Biofilmes , Eugenia , Serratia liquefaciens , Anti-Infecciosos , Extratos Vegetais/farmacologia
5.
Microb Pathog ; 121: 369-388, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29763730

RESUMO

Salmonella belongs to the Enterobacteriaceae family which is widely distributed in the environment due to its adaptive capacity to stress conditions. In addition, Salmonella is able to perform a type of cell-to-cell communication called quorum sensing, which leads to differential gene expression. The quorum sensing system mediated by AI-1, acyl homoserine lactones (AHLs), is incomplete in Salmonella because the luxI homolog gene, which encodes for AI-1 synthase, is missing in the genome. However, a homologue of LuxR, known as SdiA, is present and allows the detection of signaling molecules produced by other species of bacteria, leading to regulation of gene expression, mainly related to virulence and biofilm formation. Thus, in view of the importance of quorum sensing on the physiology regulation of microorganisms, the aim of the present study was to perform a virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs (NASIDs) for inhibition of quorum sensing by molecular docking and biofilm formation in Salmonella. In general, most plant compounds and all NSAIDs bound in, at least, one of the three modeled structures of SdiA proteins of Salmonella Enteritidis PT4 578. In addition, many tested compounds had higher binding affinities than the AHLs and the furanones which are inducers and inhibitors of quorum sensing, respectively. The Z-phytol and lonazolac molecules were good candidates for the in vitro inhibition tests of quorum sensing mediated by AI-1 and biofilm formation in Salmonella. Thus, this study directs future prospecting of plant extracts for inhibition of quorum sensing mechanism depending on AHL and biofilm formation. In addition, the use of inhibitors of quorum sensing and biofilm formation can be combined with antibiotics for better treatment efficacy, as well as the use of these compounds to design new drugs.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Percepção de Quorum/efeitos dos fármacos , Salmonella enteritidis/genética , Acil-Butirolactonas/metabolismo , Anti-Inflamatórios não Esteroides/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/fisiologia , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
World J Microbiol Biotechnol ; 34(4): 61, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651554

RESUMO

Listeria monocytogenes is a Gram-positive bacterium commonly associated with foodborne diseases. Due its ability to survive under adverse environmental conditions and to form biofilm, this bacterium is a major concern for the food industry, since it can compromise sanitation procedures and increase the risk of post-processing contamination. Little is known about the interaction between L. monocytogenes and Gram-negative bacteria on biofilm formation. Thus, in order to evaluate this interaction, Escherichia coli and L. monocytogenes were tested for their ability to form biofilms together or in monoculture. We also aimed to evaluate the ability of L. monocytogenes 1/2a and its isogenic mutant strain (ΔprfA ΔsigB) to form biofilm in the presence of E. coli. We assessed the importance of the virulence regulators, PrfA and σB, in this process since they are involved in many aspects of L. monocytogenes pathogenicity. Biofilm formation was assessed using stainless steel AISI 304 #4 slides immersed into brain heart infusion broth, reconstituted powder milk and E. coli preconditioned medium at 25 °C. Our results indicated that a higher amount of biofilm was formed by the wild type strain of L. monocytogenes than by its isogenic mutant, indicating that prfA and sigB are important for biofilm development, especially maturation under our experimental conditions. The presence of E. coli or its metabolites in preconditioned medium did not influence biofilm formation by L. monocytogenes. Our results confirm the possibility of concomitant biofilm formation by L. monocytogenes and E. coli, two bacteria of major significance in the food industry.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Listeria monocytogenes/fisiologia , Interações Microbianas/fisiologia , Aço Inoxidável , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cocultura , Contagem de Colônia Microbiana , Meios de Cultura/química , Indústria de Processamento de Alimentos , Perfilação da Expressão Gênica , Listeria monocytogenes/genética , Mutação , Fatores de Terminação de Peptídeos , Fator sigma/genética , Virulência
7.
Microb Pathog ; 102: 148-159, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27916690

RESUMO

Quorum sensing (QS) is cell-cell communication mechanism mediated by signaling molecules known as autoinducers (AIs) that lead to differential gene expression. Salmonella is unable to synthesize the AI-1 acyl homoserine lactone (AHL), but is able to recognize AHLs produced by other microorganisms through SdiA protein. Our study aimed to evaluate the influence of AI-1 on the abundance of proteins and the levels of organic acids of Salmonella Enteritidis. The presence of N-dodecyl-homoserine lactone (C12-HSL) did not interfere on the growth or the total amount of extracted proteins of Salmonella. However, the abundance of the proteins PheT, HtpG, PtsI, Adi, TalB, PmgI (or GpmI), Eno, and PykF enhanced while the abundance of the proteins RplB, RplE, RpsB, Tsf, OmpA, OmpC, OmpD, and GapA decreased when Salmonella Enteritidis was anaerobically cultivated in the presence of C12-HSL. Additionally, the bacterium produced less succinic, lactic, and acetic acids in the presence of C12-HSL. However, the concentration of extracellular formic acid reached 20.46 mM after 24 h and was not detected when the growth was in the absence of AI-1. Considering the cultivation period for protein extraction, their abundance, process and function, as well as the levels of organic acids, we observed in cells cultivated in presence of C12-HSL a correlation with what is described in the literature as entry into the stationary phase of growth, mainly related to nitrogen and amino acid starvation and acid stress. Further studies are needed in order to determine the specific role of the differentially abundant proteins and extracellular organic acids secreted by Salmonella in the presence of quorum sensing signaling molecules.


Assuntos
4-Butirolactona/análogos & derivados , Ácidos/metabolismo , Proteínas de Bactérias/metabolismo , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/fisiologia , 4-Butirolactona/farmacologia , Etanol/metabolismo , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos , Percepção de Quorum , Salmonella enteritidis/crescimento & desenvolvimento
8.
Arch Microbiol ; 199(3): 475-486, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27838734

RESUMO

Quorum sensing regulates a variety of phenotypes in bacteria including the production of virulence factors. Salmonella spp. have quorum sensing systems mediated by three autoinducers (AI-1, AI-2, and AI-3). The AI-1-mediated system is incomplete in that the bacterium relies on the synthesis of signaling molecules by other microorganisms. This study aimed to evaluate the influence of the AI-1 N-dodecanoyl-DL-homoserine lactone (C12-HSL) on the growth, motility, adhesion, and biofilm formation of Salmonella enterica serovar Enteritidis PT4 578 on a polystyrene surface. Experiments were conducted at 37 °C in anaerobic tryptone soy broth supplemented with C12-HSL and/or a mixture of four synthetic furanones, at the concentration of 50 nM each. The planktonic growth, adhesion, swarming, and twitching motility were not altered in the presence of C12-HSL and/or furanones under anaerobic conditions. However, C12-HSL induced biofilm formation after 36 h of cultivation as determined by quantification of biofilm formation, by enumeration of adhered cells to polystyrene coupons, and finally by imaging the presence of multilayered cells on an epifluorescence microscope. When furanones were present in the medium, an antagonistic effect against C12-HSL on the biofilm development was observed. The results demonstrate an induction of biofilm formation in Salmonella Enteritidis by AI-1 under anaerobic conditions. Considering that Salmonella does not produce AI-1 but respond to it, C12-HSL synthesized by other bacterial species could trigger biofilm formation by this pathogen in conditions that are relevant for its pathogenesis.


Assuntos
4-Butirolactona/análogos & derivados , Biofilmes/efeitos dos fármacos , Homosserina/análogos & derivados , Percepção de Quorum , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/fisiologia , 4-Butirolactona/farmacologia , Anaerobiose , Homosserina/farmacologia
9.
Microb Pathog ; 99: 178-190, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27565088

RESUMO

Quorum sensing is a cell-to-cell communication mechanism leading to differential gene expression in response to high population density. The autoinducer-1 (AI-1) type quorum sensing system is incomplete in Escherichia coli and Salmonella due to the lack of the AI-1 synthase (LuxI homolog) responsible for acyl homoserine lactone (AHL) synthesis. However, these bacteria encode the AHL receptor SdiA (a LuxR homolog) leading to gene regulation in response to AI-1 produced by other bacteria. This study aimed to model the SdiA protein of Salmonella enterica serovar Enteritidis PT4 578 based on three crystallized SdiA structures from Enterohemorrhagic E. coli (EHEC) with different ligands. Molecular docking of these predicted structures with AHLs, furanones and 1-octanoyl-rac-glycerol were also performed. The available EHEC SdiA structures provided good prototypes for modeling SdiA from Salmonella. The molecular docking of these proteins showed that residues Y63, W67, Y71, D80 and S134 are common binding sites for different quorum modulating signals, besides being conserved among other LuxR type proteins. We also show that AHLs with twelve carbons presented better binding affinity to SdiA than AHLs with smaller side chains in our docking analysis, regardless of the protein structures used. Interestingly, the conformational changes provided by AHL binding resulted in structural models with increased affinities to brominated furanones. These results suggest that the use of brominated furanones to inhibit phenotypes controlled by quorum sensing in Salmonella and EHEC may present a good strategy since these inhibitors seem to specifically compete with AHLs for binding to SdiA in both pathogens.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Salmonella enteritidis/enzimologia , Transativadores/química , Transativadores/metabolismo , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Sítios de Ligação , Furanos/química , Furanos/metabolismo , Glicerídeos/química , Glicerídeos/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Octanóis/química , Octanóis/metabolismo , Ligação Proteica , Conformação Proteica
10.
Foods ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38890872

RESUMO

Brazilian artisanal cheeses have recently gained significant commercial prominence and consumer favor, primarily due to their distinctive sensory attributes and cultural and historical appeal. Many of these cheeses are made with raw milk and undergo a relatively short ripening period, sometimes ranging from 4 to 8 days, though it is usually shorter than the period stated by law. Moreover, there is insufficient evidence regarding the efficacy of a short ripening period in reducing certain zoonotic foodborne pathogens, such as Brucella spp., Coxiella burnetiid, and Mycobacterium bovis (as part of the Mycobacterium tuberculosis complex). Additionally, a literature analysis revealed that the usual ripening conditions of Brazilian artisanal cheeses made with raw milk may be inefficient in reducing the levels of some hazardous bacterial, including Brucella spp., Listeria monocytogenes, coagulase-positive Staphylococcus, Salmonella, and Coxiella burnetti, to the acceptable limits established by law, thus failing to ensure product safety for all cheese types. Moreover, the assessment of the microbiological safety for this type of cheese should be broader and should also consider zoonotic pathogens commonly found in bovine herds. Finally, a standardized protocol for evaluating the effectiveness of cheese ripening must be established by considering its peculiarities.

11.
Braz J Microbiol ; 55(2): 1635-1646, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38472699

RESUMO

Minimally processed vegetables (MPVs) are marketed as convenient and healthy choices for consumers. However, the absence of post-commercialization treatments raises concerns about their microbiological safety. This study investigated the processing practices of 28 Brazilian MPV plants and compared the microbiological quality of these products with fresh counterparts in the city of Sao Paulo, Brazil. Through cluster analysis, the processing plants were categorized into two groups: group 1 (nineteen plants) primarily uses chemical substances in the washing step, while group 2 (nine plants) avoids chemical use but employs similar rinsing practices. Microbiological analysis of 100 samples (49 unprocessed and 51 MPVs) revealed no significant differences in microbial group counts (Enterobacteriaceae, coliforms, and E. coli) between the in natura (unprocessed) and MPV products. However, the prevalence of E. coli was higher in natura vegetables than in MPVs. The results indicated the presence of Salmonella DNA (from either dead or live cells or residual DNA) in 4 samples (3 in natura and 1 MPV) using conventional PCR, suggesting the presence of the pathogen in these samples. Listeria monocytogenes was absent, but Listeria innocua was found in two unprocessed products. The study suggests that certain MPVs have microbial loads similar to unprocessed vegetables, potentially serving as carriers for pathogen transmission. These findings emphasize the importance of understanding practices in Brazilian MPV processing plants, informing the implementation of control measures to improve MPV safety and shelf-life, thus ensuring microbiological safety.


Assuntos
Manipulação de Alimentos , Microbiologia de Alimentos , Verduras , Brasil , Verduras/microbiologia , Contaminação de Alimentos/análise , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Salmonella/isolamento & purificação , Salmonella/classificação , Listeria/isolamento & purificação , Listeria/classificação , Listeria/genética
12.
Braz J Microbiol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922532

RESUMO

Foodborne diseases remain a worldwide concern, despite the advances made in sanitation, pathogen surveillance and food safety management systems. The methods routinely applied for detecting pathogens in foods are time consuming, labor intensive and usually require trained and qualified individuals. The objective of this review was to highlight the use of biosensors, with a focus on the electrochemical devices, as promising alternatives for detecting foodborne pathogens. These biosensors present high speed for obtaining results, with the possibility of evaluating foods in real time, at low cost, ease of use, in addition to being compact and portable. These aspects are considered advantageous and suitable for use in food safety management systems. This work also shows some limitations for the application of biosensors, and we present perspectives with the development and use of nanomaterials.

13.
Heliyon ; 9(7): e17657, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449109

RESUMO

Over the past decade, numerous publications have emerged in the literature focusing on the inhibition of quorum sensing (QS) by plant extracts and phenolic compounds. However, there is still a scarcity of studies that delve into the specific mechanisms by which these compounds inhibit QS. Thus, our question is whether phenolic compounds can inhibit QS in a specific or indirect manner and to elucidate the underlying mechanisms involved. This study is focused on the most studied QS system, namely, autoinducer type 1 (AI-1), represented by N-acyl-homoserine lactone (AHL) signals and the AHL-mediated QS responses. Here, we analyzed the recent literature in order to understand how phenolic compounds act at the cellular level, at sub-inhibitory concentrations, and evaluated by which QS inhibition mechanisms they may act. The biotechnological application of QS inhibitors holds promising prospects for the pharmaceutical and food industries, serving as adjunct therapies and in the prevention of biofilms on various surfaces.

14.
Heliyon ; 9(3): e14152, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36923901

RESUMO

The expression of many virulence genes in bacteria is regulated by quorum sensing (QS), and the inhibition of this mechanism has been intensely investigated. N-acetylcysteine (NAC) has good antibacterial activity and is able to interfere with biofilm-related respiratory infections, but little is known whether this compound has an effect on bacterial QS communication. This work aimed to evaluate the potential of NAC as a QS inhibitor (QSI) in Pseudomonas aeruginosa PAO1 through in silico and in vitro analyses, as well as in combination with the antibiotic tobramycin. Initially, a molecular docking analysis was performed between the QS regulatory proteins, LasR and RhlR, of P. aeruginosa with NAC, 3-oxo-C12-HSL, C4-HSL, and furanone C30. The NAC sub-inhibitory concentration was determined by growth curves. Then, we performed in vitro tests using the QS reporter strains P. aeruginosa lasB-gfp and rhlA-gfp, as well as the expression of QS-related phenotypes. Finally, the synergistic effect of NAC with the antibiotic tobramycin was calculated by fractional inhibitory concentrations index (FICi) and investigated against bacterial growth, pigment production, and biofilm formation. In the molecular docking study, NAC bound to LasR and RhlR proteins in a similar manner to the AHL cognate, suggesting that it may be able to bind to QS receptor proteins in vivo. In the biosensor assay, the GFP signal was turned down in the presence of NAC at 1000, 500, 250, and 125 µM for lasB-gfp and rhlA-gfp (p < 0.05), suggesting a QS inhibitory effect. Pyocyanin and rhamnolipids decreased (p < 0.05) up to 34 and 37%, respectively, in the presence of NAC at 125 µM. Swarming and swimming motilities were inhibited (p < 0.05) by NAC at 250 to 10000 µM. Additionally, 2500 and 10000 µM of NAC reduced biofilm formation. NAC-tobramycin combination showed synergistic effect with FICi of 0.8, and the best combination was 2500-1.07 µM, inhibiting biofilm formation up to 60%, besides reducing pyocyanin and pyoverdine production. Confocal microscopy images revealed a stronger, dense, and compact biofilm of P. aeruginosa PAO1 control, while the biofilm treated with NAC-tobramycin became thinner and more dispersed. Overall, NAC at low concentrations showed promising anti-QS properties against P. aeruginosa PAO1, adding to its already known effect as an antibacterial and antibiofilm agent.

15.
mSystems ; 8(1): e0056422, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36475872

RESUMO

Microbial starter cultures are used in the production of many cheeses around the world, such as Parmigiano-Reggiano, in Italy, Époisses, in France, and Canastra, in Brazil, providing many of the unique features of these cheeses. Bacteriophages (phages) are ubiquitous and well known to modulate the structure of bacterial communities, and recent data indicate that cheeses contain a high abundance of naturally occurring phages. Here, we analyze the viral and bacterial metagenomes of Canastra cheese: a traditional artisanal Brazilian cheese produced using an endogenous starter culture and raw milk. Over 1,200 viral operational taxonomic units were recovered using both isolated viral-like particles and complete metagenomic DNA. Common viral families identified included Siphoviridae and Myoviridae, with 40% of putative phage genomes unidentified at the family level of classification. We observed very high phage diversity, which varied greatly across different cheese producers, with 28% of phage genomes detected in only one producer. Several metagenome-assembled genomes were recovered for lactic acid-producing bacteria, as well as nonstarter bacterial species, and we identified several phage-bacterium interactions, at the strain level of resolution, varying across distinct cheese producers. We postulate that at least one bacterial strain detected could be endogenous and unique to the Canastra cheese-producing region in Brazil and that its growth seems to be modulated by autochthonous phages present in this artisanal production system. This phage-host relationship is likely to influence the fermentation dynamics and ultimately the sensorial profile of these cheeses, with implications for other similar cheese production systems around the world. IMPORTANCE Our work demonstrated a dynamic yet stable microbial ecosystem during cheese production using an endogenous starter culture. This was observed across several distinct producers and was marked by genomic evidence of continued phage-bacterium interactions, such as the presence of bacterial defense mechanisms. Furthermore, we provide evidence of unique microbial signatures for each individual cheese producer studied in the region, a fact that may have profound consequences on product traceability. This was the first effort to describe and understand the bacteriophage composition and ecological dynamics within the Brazilian Canastra cheese production system. The study of this prototypical backslopping production system provides a solid background for further mechanistic studies of the production of many cheeses around the world.


Assuntos
Bacteriófagos , Queijo , Lactobacillales , Microbiota , Humanos , Animais , Queijo/análise , Leite/microbiologia , Bacteriófagos/genética , Bactérias/genética , Microbiota/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-37855943

RESUMO

Ipsum vinum est potestas et possession (wine itself is power and possession). Wine is a complex system that triggers multisensory cognitive stimuli. Wine and its consumption are thoroughly intertwined with the development of human society. The beverage was appreciated in many ancient mythologies and plays an essential part in Christianity and rituals to this day. Wine has been said to enlighten and inspire artists and has even been prohibited by law and some religions, but has nevertheless played a role in human civilizations since the beginning. Winemaking is also a prospering and economically important industry and a longtime symbol of status and luxury. In winemaking, the formation of the final product is influenced by several factors that contribute to the chemical and sensory complexity often associated with quality vintages. Factors such as terroir, climatic conditions, variety of the grape, all aspects of the winemaking process to the smallest details, including metabolic processes carried out by yeast and malolactic bacteria, and the conditions for the maturation and storage of the final product, up to, and even beyond the point of deciding to open the bottle and enjoy the wine. In conjunction with the empiric and scientific process of winemaking, different molecules with antibacterial activity can be identified in wine during the production process, and several of them are clearly present in the final product. Some of these antibacterial components are phytochemicals, such as flavonoids and phenolic compounds, that may be delivered to the final product (wine) as a part of the grape, a variety of potential additive compounds, or from the oak barrels or clay amphoras used during the maturation process. Others are produced by yeasts and malolactic bacteria and play a role not only in the moderation of the fermentation process but contributing to the microbiological safety and beneficial properties spectra of the final product. Lactic acid bacteria, responsible for conducting malolactic fermentation, contribute to the final balance of the wine but are also directly involved in the production of different compounds exhibiting antibacterial activity. Some examples of these compounds include bacteriocins (antibacterial peptides), diacetyl, organic acids, reuterin, hydrogen peroxide, and carbon dioxide. Major aspects of these different beneficial metabolites are the subject of discussion in this review with the aim of highlighting their beneficial functions.

17.
Braz J Microbiol ; 54(3): 2103-2116, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37594655

RESUMO

Canastra Minas Artisanal Cheese is produced in the Brazilian State of Minas Gerais using raw milk, rennet, and pingo, a natural endogenous starter culture (fermented whey) collected from the previous day's production. Due to the use of raw milk, the product can carry microorganisms that may cause foodborne diseases (FBD), including Staphylococcus aureus. Genomic characterization of S. aureus is an important tool to assess diversity, virulence, antimicrobial resistance, and the potential for causing food poisoning due to enterotoxin production. This study is aimed at exploring the genomic features of S. aureus strains isolated from Canastra Minas Artisanal Cheeses. Multilocus sequence typing (MLST) classified these strains as ST1, ST5, and a new profile ST7849 (assigned to the clonal complex CC97). These strains belonged to four spa types: t008, t127, t359, and t992. We identified antimicrobial resistance genes with phenotypic correlation against methicillin (MRSA) and tetracycline. Virulome analysis revealed genes associated with iron uptake, immune evasion, and potential capacity for adherence and biofilm formation. The toxigenic potential included cyto- and exotoxins genes, and all strains presented the genes that encode for Panton-Valentine toxin and hemolysin, and two strains encoded 4 and 8 Staphylococcal enterotoxin (SE) genes. The results revealed the pathogenic potential of the evaluated S. aureus strains circulating in the Canastra region, representing a potential risk to public health. This study also provides useful information to monitor and guide the application of control measures to the artisanal dairy food production chain.


Assuntos
Queijo , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Tipagem de Sequências Multilocus , Genômica , Enterotoxinas/genética
18.
Braz J Microbiol ; 53(4): 2133-2144, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35947344

RESUMO

Salmonella is an important foodborne pathogen, and it is unable to produce the quorum sensing signaling molecules called acyl-homoserine lactones (AHLs). However, it synthesizes the SdiA protein, detecting AHL molecules, also known as autoinducer-1 (AI-1), in the external environment. Exogenous AHLs can regulate specific genes related to virulence and stress response in Salmonella. Thus, interfering with quorum sensing can be a strategy to reduce virulence and help elucidate the cell-to-cell communication role in the pathogens' response to extracellular signals. This study aimed to evaluate the influence of the quorum sensing inhibitors furanone and phytol on phenotypes regulated by N-dodecanoyl homoserine lactone (C12-HSL) in Salmonella enterica serovar Enteritidis. The furanone C30 at 50 nM and phytol at 2 mM canceled the alterations promoted by C12-HSL on glucose consumption and the levels of free cellular thiol in Salmonella Enteritidis PT4 578 under anaerobic conditions. In silico analysis suggests that these compounds can bind to the SdiA protein of Salmonella Enteritidis and accommodate in the AHL binding pocket. Thus, furanone C30 and phytol act as antagonists of AI-1 and are likely inhibitors of the quorum sensing mechanism mediated by AHL in Salmonella.


Assuntos
Acil-Butirolactonas , Fitol , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Transativadores/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Percepção de Quorum , Salmonella enteritidis/genética , Fenótipo
19.
Microorganisms ; 10(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296305

RESUMO

The applications of microalgae biomass have been widely studied worldwide. The classical processes used in outdoor cultivations of microalgae, in closed or open photobioreactors, occur in the presence of bacteria. Understanding how communication between cells occurs through quorum sensing and evaluating co-cultures allows the production of microalgae and cyanobacteria to be positively impacted by bacteria, in order to guarantee safety and profitability in the production process. In addition, the definition of the effects that occur during an interaction, promotes insights to improve the production of biomolecules, and to develop innovative products. This review presents the interactions between microalgae and bacteria, including compounds exchanges and communication, and addresses the development of new pharmaceutical, cosmetic and food bioproducts from microalgae based on these evaluations, such as prebiotics, vegan skincare products, antimicrobial compounds, and culture media with animal free protein for producing vaccines and other biopharmaceutical products. The use of microalgae as raw biomass or in biotechnological platforms is in line with the fulfillment of the 2030 Agenda related to the Sustainable Development Goals (SDGs).

20.
Biomed Res Int ; 2022: 8440304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312853

RESUMO

Edible coatings have several advantages in preserving foods, such as avoiding water loss, controlling microbial growth, and reducing the need for preservatives added directly to the product. Antimicrobial action can be obtained by adding antimicrobial substances including phenolic compounds commonly found in plant extracts. This study evaluated the phenolic compounds content, antioxidant and antimicrobial activity of pulp, and seed extracts of Mimusopsis comersonii (popularly known in Brazil as abrico), besides the phenolic compounds were identified and quantified in the pulp extract. Edible coatings were incorporated with pulp extract in order to evaluate the preservation of minimally processed apples and baroa potatoes against foodborne bacteria, and enzymatic browning was also determined. Myricetin-3-glucoside, quercetin-3-glucoside, and kaempferol-3-glucoside were identified as major flavonoids in the apricot pulp extract. The seed and pulp extracts inhibited all tested microorganisms, especially Staphylococcus aureus and Salmonella Typhimurium. Edible coatings added with 9% of phenolic extract showed in vitro antimicrobial activity, in addition to being effective in preventing enzymatic browning in minimally processed apples and baroa potatoes for up to 15 days of storage. They were also effective in reducing up to 2 log CFU/g of aerobic mesophiles after 15 days of storage for apples, even though no microbial inhibition in baroa potatoes was observed under the same conditions. The addition of pulp phenolic extract in edible coatings proved to be an alternative in the preservation of apples and in the antibrowning activity of minimally processed baroa potatoes.


Assuntos
Anti-Infecciosos , Filmes Comestíveis , Malus , Prunus armeniaca , Antioxidantes/farmacologia , Antioxidantes/análise , Verduras , Conservação de Alimentos , Frutas/química , Malus/microbiologia , Fenóis/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Glucosídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA