Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511632

RESUMO

Exosomal regulation is intimately involved in key cellular processes, such as migration, proliferation, and adhesion. By participating in the regulation of basic mechanisms, extracellular vesicles are important in intercellular signaling and the functioning of the mammalian reproductive system. The complexity of intercellular interactions in the ovarian follicle is also based on multilevel intercellular signaling, including the mechanisms involving cadherins, integrins, and the extracellular matrix. The processes in the ovary leading to the formation of a fertilization-ready oocyte are extremely complex at the molecular level and depend on the oocyte's ongoing relationship with granulosa cells. An analysis of gene expression from material obtained from a primary in vitro culture of porcine granulosa cells was employed using microarray technology. Genes with the highest expression (LIPG, HSD3B1, CLIP4, LOX, ANKRD1, FMOD, SHAS2, TAGLN, ITGA8, MXRA5, and NEXN) and the lowest expression levels (DAPL1, HSD17B1, SNX31, FST, NEBL, CXCL10, RGS2, MAL2, IHH, and TRIB2) were selected for further analysis. The gene expression results obtained from the microarrays were validated using quantitative RT-qPCR. Exosomes may play important roles regarding intercellular signaling between granulosa cells. Therefore, exosomes may have significant applications in regenerative medicine, targeted therapy, and assisted reproduction technologies.


Assuntos
Células da Granulosa , Folículo Ovariano , Feminino , Suínos , Animais , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Ovário/metabolismo , Proliferação de Células/genética , Mamíferos
2.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629120

RESUMO

Wharton's jelly (WJ) contains mesenchymal stem cells (MSCs) exhibiting broad immunomodulatory properties and differentiation capacity, which makes them a promising tool for cellular therapies. Although the osteogenic, chondrogenic and adipogenic differentiation is a gold standard for proper identification of MSCs, it is important to elucidate the exact molecular mechanisms governing these processes to develop safe and efficient cellular therapies. Umbilical cords were collected from healthy, full-term deliveries, for subsequent MSCs (WJ-MSCs) isolation. WJ-MSCs were cultivated in vitro for osteogenic, chondrogenic, adipogenic and neurogenic differentiation. The RNA samples were isolated and the transcript levels were evaluated using NovaSeq platform, which led to the identification of differentially expressed genes. Expression of H19 and SLPI was enhanced in adipocytes, chondrocytes and osteoblasts, and NPPB was decreased in all analyzed groups compared to the control. KISS1 was down-regulated in adipocytes, chondrocytes, and neural-like cells compared to the control. The most of identified genes were already implicated in differentiation of MSCs; however, some genes (PROK1, OCA2) have not yet been associated with initiating final cell fate. The current results indicate that both osteo- and adipo-induced WJ-MSCs share many similarities regarding the most overexpressed genes, while the neuro-induced WJ-MSCs are quite distinctive from the other three groups. Overall, this study provides an insight into the transcriptomic changes occurring during the differentiation of WJ-MSCs and enables the identification of novel markers involved in this process, which may serve as a reference for further research exploring the role of these genes in physiology of WJ-MSCs and in regenerative medicine.


Assuntos
Hormônios Gastrointestinais , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina , Geleia de Wharton , Humanos , Condrócitos , Adipócitos , Diferenciação Celular/genética , Osteoblastos , Fatores Imunológicos
3.
Molecules ; 27(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408631

RESUMO

Perindopril arginine (PA) as an angiotensin-converting enzyme (ACE) inhibitor is widely used in cardiovascular diseases, especially in systemic hypertension and heart failure. Although the pharmacokinetics of PA are well documented, there is no available detailed data on its permeation in in vitro conditions. The present study aimed to assess the transport of PA across both biological membranes and artificial biomimetic ones. For the determination of PA transport, the Caco-2 cell line was selected as a reliable in vitro model of gastrointestinal biological barriers. Additionally, a novel 96-well plate with phospholipid membrane PermeaPad was used to evaluate the transport of PA by passive diffusion. We confirmed that PA is relatively poorly permeable across the Caco-2 monolayer. The permeability results obtained from the non-cell-based model demonstrated higher transport of PA as compared to that of Caco-2. Thus, PA transport across the biological membranes might be suggested to be regulated by the membrane transporters.


Assuntos
Perindopril , Fosfolipídeos , Arginina , Transporte Biológico , Biomimética , Células CACO-2 , Permeabilidade da Membrana Celular , Humanos , Absorção Intestinal , Permeabilidade
4.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206369

RESUMO

Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells' application in regenerative medicine.


Assuntos
Tecido Adiposo/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Células-Tronco/metabolismo , Transcriptoma , Animais , Diferenciação Celular , Cães , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Análise de Sequência de RNA , Células-Tronco/fisiologia
5.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201116

RESUMO

The methylated resveratrol analogue 3'-hydroxy-3,4,5,4'-tetramethoxystilbene (DMU-214) has been revealed to exert the anti-cancer activity by a block of the cell cycle at the G2/M phase, apoptosis induction, and metastasis inhibition. These biological events may be involved in crosstalk with the epidermal growth factor receptor (EGFR), which belongs to the ErbB family of receptor tyrosine kinases. Several cancer therapeutic approaches employ small molecules capable of inhibiting tyrosine kinases (e.g., gefitinib). According to more recent reports, combining gefitinib with chemotherapeutics, such as cisplatin, seems to be more effective than monotherapy. The present study aimed to assess the molecular mechanism of the potential anti-proliferative activity of individual and combined treatments with DMU-214 and gefitinib in SCC-25 and CAL-27 human tongue cancer cell lines. We showed for the first time the anti-cancer effects of DMU-214, gefitinib, and their combination in tongue cancer cells triggered via cell cycle arrest, apoptosis induction, and inhibition of the EGFR signaling pathway. The anti-proliferative effects of DMU-214 and gefitinib are also suggested to be related to the EGFR and EGFRP (phosphorylated epidermal growth factor receptor) expression status since we found significantly weaker cytotoxic activity of the compounds tested in SCC-25 cells, which overexpressed EGFR and EGFRP proteins.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Língua/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Proliferação de Células , Receptores ErbB/antagonistas & inibidores , Gefitinibe/administração & dosagem , Humanos , Resveratrol/administração & dosagem , Resveratrol/análogos & derivados , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Células Tumorais Cultivadas
6.
Histochem Cell Biol ; 154(1): 77-95, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32189110

RESUMO

Genes influencing oocyte maturation may be valuable for predicting their developmental potential, as well as discerning the mechanistic pathways regulating oocyte development. In the presented research microarray gene expression analysis of immature and in vitro matured porcine oocytes was performed. Two groups of oocytes were compared in the study: before (3 × n = 50) and after in vitro maturation (3 × n = 50). The selection of viable oocytes was performed using the brilliant cresyl blue (BCB) test. Furthermore, microarrays and RT-qPCR was used to analyze the transcriptome of the oocytes before and after IVM. The study focused on the genes undergoing differential expression in two gene-ontology groups: "Cellular response to hormone stimulus" and "Cellular response to unfolded protein", which contain genes that may directly or indirectly be involved in signal transduction during oocyte maturation. Examination of all the genes of interest showed a lower level of their expression after IVM. From the total number of genes in these gene ontologies ten of the highest change in expression were identified: FOS, ID2, BTG2, CYR61, ESR1, AR, TACR3, CCND2, EGR2 and TGFBR3. The successful maturation of the oocytes was additionally confirmed with the use of lipid droplet assay. The genes were briefly described and related to the literature sources, to investigate their potential roles in the process of oocyte maturation. The results of the study may serve as a basic molecular reference for further research aimed at improving the methods of oocyte in vitro maturation, which plays an important role in the procedures of assisted reproduction.


Assuntos
Hormônios/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Lipídeos/análise , Oócitos/metabolismo , Animais , Células Cultivadas , Amarelo de Eosina-(YS)/química , Feminino , Hematoxilina/química , Hormônios/genética , Oócitos/crescimento & desenvolvimento , Oxazinas/química , Transdução de Sinais , Suínos
7.
Histochem Cell Biol ; 153(6): 397-412, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32157392

RESUMO

The primary function of ovarian granulosa cells (GCs) is the support of oocytes during maturation and development. Molecular analyses of granulosa cell-associated processes, leading to improvement of understanding of the cell cycle events during the formation of ovarian follicles (folliculogenesis), may be key to improve the in vitro fertilization procedures. Primary in vitro culture of porcine GCs was employed to examine the changes in the transcriptomic profile of genes belonging to "cell cycle", "cell division", "cell cycle process", "cell cycle phase transition", "cell cycle G1/S phase transition", "cell cycle G2/M phase transition" and "cell cycle checkpoint" ontology groups. During the analysis, microarrays were employed to study the transcriptome of GCs, analyzing the total RNA of cells from specific periods of in vitro cultures. This research was based on material obtained from 40 landrace gilts of similar weight, age and the same living conditions. RNA was isolated at specific timeframes: before the culture was established (0 h) and after 48 h, 96 h and 144 h in vitro. Out of 133 differentially expressed genes, we chose the 10 most up-regulated (SFRP2, PDPN, PDE3A, FGFR2, PLK2, THBS1, ETS1, LIF, ANXA1, TGFB1) and the 10 most downregulated (IGF1, NCAPD2, CABLES1, H1FOO, NEK2, PPAT, TXNIP, NUP210, RGS2 and CCNE2). Some of these genes known to play key roles in the regulation of correct cell cycle passage (up-regulated SFRP2, PDE3A, PLK2, LIF and down-regulated CCNE2, TXNIP, NEK2). The data obtained provide a potential reference for studies on the process of mammalian folliculogenesis, as well as suggests possible new genetic markers for cell cycle progress in in vitro cultured porcine granulosa cells.


Assuntos
Ciclo Celular/genética , Células da Granulosa/citologia , Folículo Ovariano/citologia , Transcriptoma , Animais , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Suínos
8.
Int J Mol Sci ; 21(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046103

RESUMO

Targeting tumor cell motility and proliferation is an extremely important challenge in the prevention of metastasis and improving the effectiveness of cancer treatment. We recently published data revealing that DMU-214, the metabolite of firmly cytotoxic resveratrol analogue DMU-212, exerted significantly higher biological activity than the parent compound in ovarian cancer cells. The aim of the present study was to assess the molecular mechanism of the potential anti-migration and anti-proliferative effect of DMU-214 in ovarian cancer cell line SKOV-3. We showed that DMU-214 reduced the migratory capacity of SKOV-3 cells. The microarray analysis indicated ontology groups of genes involved in processes of negative regulation of cell motility and proliferation. Furthermore, we found DMU-214 triggered changes in expression of several migration- and proliferation-related genes (SMAD7, THBS1, IGFBP3, KLF4, Il6, ILA, SOX4, IL15, SRF, RGCC, GPR56) and proteins (GPR56, RGCC, SRF, SMAD7, THBS1), which have been shown to interact to each other to reduce cell proliferation and motility. Our study showed for the first time that DMU-214 displayed anti-migratory and anti-proliferative activity in SKOV-3 ovarian cancer cells. On the basis of whole transcriptome analysis of these cells, we provide new insight into the role of DMU-214 in inhibition of processes related to metastasis.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Ovarianas/metabolismo , Resveratrol/análogos & derivados , Estilbenos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Estilbenos/metabolismo , Transcriptoma
9.
Molecules ; 25(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168847

RESUMO

The aim of this study was to compare the protective effects of chokeberry juice and silymarin against chemical-induced liver fibrosis in rats. Liver fibrosis was induced by CCl4 administered two days a week for six weeks. Two groups of rats were co-treated with chokeberry juice, 10 mL/kg/day. or silymarin as a positive control, 100 mg/kg/day for six weeks. Hepatic lipid peroxidation was suppressed by 50% and the activity of hepatic antioxidant enzymes was increased by 19%-173% in rats co-treated with CCl4 and substances tested as compared to rats administered CCl4 alone. Hepatic hydroxyproline was decreased by 24% only in rats treated with silymarin. The messenger RNA (mRNA) expression levels of fibrosis-related molecules, procollagen I, α-SMA, TIMP-1, TGFß, and TNFα, which were significantly increased in the liver of CCl4-treated rats, were not modulated by substances tested. Histological evaluation revealed a slight protective effect of silymarin against fibrosis. However, in CCl4 + chokeberry-treated rats, the density of vacuolated hepatocytes was significantly lower than that in silymarin administered animals. Chokeberry juice did not demonstrate an antifibrotic effect in the applied experimental model of fibrosis, and the effect of the known antifibrotic agent, silymarin, was very limited.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Sucos de Frutas e Vegetais/análise , Frutas/química , Cirrose Hepática/tratamento farmacológico , Fitoterapia/métodos , Silimarina/farmacologia , Actinas/genética , Actinas/metabolismo , Animais , Tetracloreto de Carbono/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação da Expressão Gênica , Hidroxiprolina/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/patologia , Masculino , Pró-Colágeno/genética , Pró-Colágeno/metabolismo , Prunus/química , Ratos , Ratos Wistar , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
Invest New Drugs ; 37(5): 849-864, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30498945

RESUMO

It has been shown previously that molecules built on benzanilide and thiobenzanilide scaffolds possess differential biological properties including selective anticancer activity. In our previous study, we examined the cytotoxic activity and mechanism of action of the thiobenzanilide derivative N,N'-(1,2-phenylene)bis3,4,5-trifluorobenzothioamide (63 T) as a potential chemotherapeutic compound in an experimental model employing A549 lung adenocarcinoma cells and CCD39Lu non-tumorigenic lung fibroblasts. Since the results suggested oxidative stress as a co-existing mechanism of the cytotoxic effect exerted by 63 T on tested cells, studies involving the analysis of reactive oxygen species (ROS) generation and markers of oxidative stress in cells incubated with 63 T were carried out. It may be concluded that the selective activity of 63 T against cancer cells shown in our experiments is caused, at least in part, by the response of the tested cells to 63 T mediated oxidative stress in both tested cell lines.


Assuntos
Adenocarcinoma de Pulmão/patologia , Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , Fibroblastos/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Estresse Oxidativo/efeitos dos fármacos , Tioamidas/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Apoptose , Proliferação de Células , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443152

RESUMO

Nowadays, science has a lot of knowledge about the physiology of ovarian processes, especially folliculogenesis, hormone production and ovulation. However, the molecular basis for these processes remains largely undiscovered. The cell layer surrounding the growing oocyte-granulosa cells-are characterized by high physiological capabilities (e.g., proliferation, differentiation) and potential for growth in primary cultures, which predisposes them for analysis in the context of possible application of their cultures in advanced methods of assisted reproduction. In this study, we have used standard molecular approaches to analyze markers of these processes in primarily in vitro cultured porcine granulosa, subjected to conditions usually applied to cultures of similar cells. The material for our research came from commercially slaughtered pigs. The cells were obtained by enzymatic digestion of tissues and in vitro culture in appropriate conditions. The obtained genetic material (RNA) was collected at specific time intervals (0 h-before culture; reference, 48, 98, 144 h) and then analyzed using expression microarrays. Genes that showed a fold change greater than |2| and an adjusted p value lower than 0.05 were described as differentially expressed. Three groups of genes: "Cell morphogenesis", "cell differentiation" and "cell development" were analyzed. From 265 differently expressed genes that belong to chosen ontology groups we have selected DAPL1, CXCL10, NEBL, IHH, TGFBR3, SCUBE1, DAB1, ITM2A, MCOLN3, IGF1 which are most downregulated and PDPN, CAV1, TMOD1, TAGLN, IGFBP5, ITGB3, LAMB1, FN1, ITGA2, POSTN genes whose expression is upregulated through the time of culture, on which we focused in downstream analysis. The results were also validated using RT-qPCR. The aim of our work was to conduct primary in vitro culture of granulosa cells, as well as to analyze the expression of gene groups in relation to the proliferation of follicular granulosa cells in the model of primary culture in real time. This knowledge should provide us with a molecular insight into the processes occurring during the in vitro cultures of porcine granulosa cells, serving as a basic molecular entry on the extent of the loss of their physiological properties, as well as gain of new, culture-specific traits.


Assuntos
Células da Granulosa/citologia , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Feminino , Morfogênese/genética , Morfogênese/fisiologia , Suínos , Transcriptoma/genética
12.
Int J Mol Sci ; 20(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295879

RESUMO

Oviductal epithelial cells (OECs) actively produce stimulating and protecting factors, favoring survival and viability of gametes and early embryos. The oviduct participates in the initial reproductive events, which strongly depends on adhesion. The analysis of differential gene expression in OECs, during long-term in vitro culture, enables recognition of new molecular markers regulating several processes, including "biological adhesion". Porcine oviducts were stained with hematoxylin and eosin, as well as with antibodies against epithelial markers. Then, OECs were long-term in vitro cultured and after 24 h, 7, 15, and 30 days of culture were subjected to transcriptomic and proteomic assays. Microarrays were employed to evaluate gene expression, with Matrix-assisted laser desorption/ionization-time of light (MALDI-TOF) mass spectrometry applied to determine the proteome. The results revealed proper morphology of the oviducts and typical epithelial structure of OECs during the culture. From the set of differentially expressed genes (DEGs), we have selected the 130 that encoded proteins detected by MALDI-TOF MS analysis. From this gene pool, 18 significantly enriched gene ontology biological processes (GO BP) terms were extracted. Among them we focused on genes belonging to "biological adhesion" GO BP. It is suggested that increased expression of studied genes can be attributed to the process of intensive secretion of substances that exhibit favorable influence on oviductal environment, which prime gametes adhesion and viability, fertilization, and early embryo journey.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Mucosa/metabolismo , Oviductos/metabolismo , Animais , Células Cultivadas , Biologia Computacional/métodos , Tubas Uterinas/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Proteoma , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Suínos , Espectrometria de Massas em Tandem , Transcriptoma
13.
Int J Mol Sci ; 20(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067669

RESUMO

This paper aims to identify and describe new genetic markers involved in the processes of protein expression and modification reflected in the change of mitochondrial activity before and after in vitro maturation of the oocyte. Porcine oocytes collected from the ovaries of slaughtered landrace gilts were subjected to the process of in vitro maturation. Transcriptomic changes in the expression profile of oocyte genes involved in response to hypoxia, the transmembrane protein receptor serine threonine kinase signaling pathway, the "transforming growth factor ß receptor signaling pathway", "response to protein stimulus", and "response to organic substance" were investigated using microarrays. The expression values of these genes in oocytes was analyzed before (immature) and after (mature) in vitro maturation, with significant differences found. All the significantly altered genes showed downregulation after the maturation process. The most changed genes from these gene ontologies, FOS, ID2, VEGFA, BTG2, CYR61, ESR1, AR, TACR3, CCND2, CHRDL1, were chosen to be further validated, described and related to the literature. Additionally, the mitochondrial activity of the analyzed oocytes was measured using specific dyes. We found that the mitochondrial activity was higher before the maturation process. The analysis of these results and the available literature provides a novel insight on the processes that occur during in vitro oocyte maturation. While this knowledge may prove to be useful in further research of the procedures commonly associated with in vitro fertilization procedures, it serves mostly as a basic reference for further proteomic, in vivo, and clinical studies that are necessary to translate it into practical applications.


Assuntos
Mitocôndrias/metabolismo , Oócitos/metabolismo , Oogênese/genética , Transcriptoma , Animais , Hipóxia Celular/genética , Células Cultivadas , Feminino , Técnicas de Maturação in Vitro de Oócitos , Mitocôndrias/genética , Oócitos/citologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Suínos , Fator de Crescimento Transformador beta/metabolismo
14.
Bioorg Med Chem ; 26(1): 141-151, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191502

RESUMO

25 new trans-stilbene and trans-stilbazole derivatives were investigated using in vitro and in silico techniques. The selectivity and potency of the compounds were assessed using commercial ELISA test. The obtained results were incorporated into 2D QSAR assay. The most promising compound 4-nitro-3',4',5'-trihydroxy-trans-stilbene (N1) was synthetized and its potency and selectivity were confirmed. N1 was classified as preferential COX-2 inhibitor. Its ability to inhibit COX-2 in MCF-7 cell line was established and its cytotoxicity by MTT test was assessed. The compound was more cytotoxic than celecoxib within studied concentration range. Finally, the investigated trans-stilbene was docked into COX-1 and COX-2 active sites using "CDOCKER" protocol.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Estilbenos/farmacologia , Celecoxib/química , Celecoxib/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Humanos , Células MCF-7 , Estrutura Molecular , Estereoisomerismo , Estilbenos/síntese química , Estilbenos/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
Stem Cell Rev Rep ; 20(4): 967-979, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372877

RESUMO

Epithelial-mesenchymal transition (EMT) is a crucial process with significance in the metastasis of malignant tumors. It is through the acquisition of plasticity that cancer cells become more mobile and gain the ability to metastasize to other tissues. The mesenchymal-epithelial transition (MET) is the return to an epithelial state, which allows for the formation of secondary tumors. Both processes, EMT and MET, are regulated by different pathways and different mediators, which affects the sophistication of the overall tumorigenesis process. Not insignificant are also cancer stem cells and their participation in the angiogenesis, which occur very intensively within tumors. Difficulties in effectively treating cancer are primarily dependent on the potential of cancer cells to rapidly expand and occupy secondarily vital organs. Due to the ability of these cells to spread, the concept of the circulating tumor cell (CTC) has emerged. Interestingly, CTCs exhibit molecular diversity and stem-like and mesenchymal features, even when derived from primary tumor tissue from a single patient. While EMT is necessary for metastasis, MET is required for CTCs to establish a secondary site. A thorough understanding of the processes that govern the balance between EMT and MET in malignancy is crucial.


Assuntos
Transição Epitelial-Mesenquimal , Células Neoplásicas Circulantes , Células-Tronco Neoplásicas , Neovascularização Patológica , Humanos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Neovascularização Patológica/patologia , Neoplasias/patologia , Neoplasias/metabolismo , Animais , Fenótipo , Proliferação de Células/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/patologia
16.
Pharmaceutics ; 15(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38004503

RESUMO

The Caco-2 cell line derived from human colon carcinoma is commonly used to assess the permeability of compounds in in vitro conditions. Due to the significant increase in permeability studies using the Caco-2 cell line in recent years, the need to standardize this biological model seems necessary. The pharmaceutical requirements define only the acceptance criteria for the validation of the Caco-2 cell line and do not specify the protocol for its implementation. Therefore, the aim of this study is to review the conditions for permeability studies across the Caco-2 monolayer reported in the available literature concerning validation guidelines. We summarized the main aspects affecting the validation process of the Caco-2 cell line, including the culture conditions, cytotoxicity, cell differentiation process, and monolayer transport conditions, and the main conclusions may be useful in developing individual methods for preparing the cell line for validation purposes and further permeability research.

17.
Pharmaceutics ; 15(7)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37514194

RESUMO

Sonodynamic therapy (SDT) is a non-invasive therapeutic modality in cancer treatment that combines low-intensity ultrasound (US) and sonosensitizers. Tumor cells are destroyed through the synergistic effects of ultrasound and a chemical sonosensitizer. This study focused on the synthesis and in vitro evaluation of the sonodynamic effect of natural curcumin, triterpene oleanolic acid, and their semi-synthetic derivatives on tongue cancer SCC-25 and hypopharyngeal FaDu cell lines. The combination of the tested compounds with sonication showed a synergistic increase in cytotoxicity. In the group of oleanolic acid derivatives, oleanoyl hydrogen succinate (6) showed the strongest cytotoxic effect both in the SCC-25 and FaDu cell lines. Comparing curcumin (4) and its pyrazole derivative (5), curcumin showed a better cytotoxic effect on SCC-25 cells, while curcumin pyrazole was more potent on FaDu cells. The highest sonotherapeutic activity, compared to its individual components, was demonstrated by a structural linker mode hybrid containing both curcumin pyrazole-oleanoyl hydrogen succinate units within one complex molecule (7). This study can be beneficial in the context of new perspectives in the search for effective sonosensitizers among derivatives of natural organic compounds.

18.
Plants (Basel) ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447047

RESUMO

(1) The cytotoxicity and antioxidant activity of different fractions as well as the pro-apoptotic activity of saponin fractions from Eryngium planum L. in SKOV-3 was investigated. (2) In screening studies, the cytotoxicity of six fractions on SKOV-3 was examined by LDH and SRB assays. The most active fractions-triterpenoid saponins-were selected for further investigation. To determine the mechanism of saponin fractions' cytotoxicity, their ability to induce apoptosis was examined via Annexin V assay. The effect of the saponin fractions on caspase 3 activity was measured using a Caspase 3 Assay Kit. The expression of 84 apoptosis-related genes was investigated in cancer cells exposed to saponin fractions from the roots. The radical scavenging capacity of different fractions was determined via DPPH assay. (3) The pronounced cytotoxic effects in SKOV-3 were demonstrated by saponin fractions from the leaves and roots. Those saponin fractions were chosen for further investigation. The treatment of cancer cell lines with saponins obtained from the roots provoked a significant increase in apoptotic cells. In the SKOV-3 cells, saponins caused upregulation of pro-apoptotic genes and a decrease in anti-apoptotic genes. The activation of caspase 3 was correlated with an increased DFFA expression level in the treated SKOV-3 cells. The most active fractions were phenolic acids from the shoots and roots. (4) To the best of our knowledge, the current study is the first to demonstrate that the barrigenol-type triterpenoid saponin fraction from the roots of E. planum inhibits SKOV-3 cell proliferation and induces apoptosis, which may be regulated by the expression of genes mostly specific to a mitochondria-related pathway.

19.
Endocrine ; 82(3): 681-694, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572199

RESUMO

PURPOSE: Steroid hormone secretion is one of the key functions of granulosa cells (GCs). Resveratrol is a natural polyphenol, known for its beneficial health effects, such as improving reproductive health. However, its application is limited due to poor bioavailability. The methoxy derivative of resveratrol (DMU-212) was demonstrated to be more lipophilic, and therefore of greater bioavailability. However, since the addition of methoxy groups to the stilbene scaffold was found to make the molecule insoluble in water, DMU-212 was loaded into liposomes. This study aimed to evaluate how the liposomal formulation of DMU-212 (lipDMU-212) alters estradiol and progesterone secretion of human ovarian GCs in a primary three-dimensional cell culture model. METHODS: DMU-212-loaded liposomes were prepared by thin film hydration followed by extrusion. Cell viability was measured after exposure of GCs spheroids to the liposomal formulation of DMU-212 using CellTiter-Glo® 3D Cell Viability Assay. The secretion of estradiol and progesterone was determined using commercial ELISA kits. RT-qPCR was conducted to analyze the expression of steroidogenesis-related genes. Finally, the western blot technique was used to analyze the effect of lipDMU-212 and FSH treatments on CYP11A1 and HSD3B1 protein levels. RESULTS: lipDMU-212 was found to significantly increase estradiol and progesterone secretion in a dose-dependent manner by enhancing the expression of CYP11A1, HSD3B1, StAR, CYP17A1, CYP19A1, and HSD17B1 genes. We have also shown that lipDMU-212, used alone and in combination with FSH, significantly increased the expression of the HSD3B1 and CYP11A1 proteins in GCs. Furthermore, our study suggests that lipDMU-212 increases FSH activity. CONCLUSIONS: This is the first study to describe the steroidogenic activity of liposomal formulation of DMU-212, possibly through increasing the StAR and CYP19A1 expression. These findings suggest that lipDMU-212 might have a beneficial effect in the treatment of disorders related to estrogen deficiency and hyperandrogenism, such as PCOS.


Assuntos
Progesterona , Estilbenos , Feminino , Humanos , Resveratrol/farmacologia , Resveratrol/metabolismo , Progesterona/farmacologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Lipossomos/metabolismo , Lipossomos/farmacologia , Estilbenos/farmacologia , Estilbenos/metabolismo , Estradiol/farmacologia , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/metabolismo , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/farmacologia
20.
Cells ; 12(18)2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37759515

RESUMO

Healing of dense regular connective tissue, due to a high fiber-to-cell ratio and low metabolic activity and regeneration potential, frequently requires surgical implantation or reconstruction with high risk of reinjury. An alternative to synthetic implants is using bioscaffolds obtained through decellularization, a process where the aim is to extract cells from the tissue while preserving the tissue-specific native molecular structure of the ECM. Proteins, lipids, nucleic acids and other various extracellular molecules are largely involved in differentiation, proliferation, vascularization and collagen fibers deposit, making them the crucial processes in tissue regeneration. Because of the multiple possible forms of cell extraction, there is no standardized protocol in dense regular connective tissue (DRCT). Many modifications of the structure, shape and composition of the bioscaffold have also been described to improve the therapeutic result following the implantation of decellularized connective tissue. The available data provide a valuable source of crucial information. However, the wide spectrum of decellularization makes it important to understand the key aspects of bioscaffolds relative to their potential use in tissue regeneration.


Assuntos
Ácidos Nucleicos , Medicina Regenerativa , Humanos , Diferenciação Celular , Implantação do Embrião , Neovascularização Patológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA