Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Rep ; 13(1): 17037, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813860

RESUMO

Drug repurposing is an important strategy in COVID-19 treatment, but many clinically approved compounds have not been extensively studied in the context of embryogenesis, thus limiting their administration during pregnancy. Here we used the zebrafish embryo model organism to test the effects of 162 marketed drugs on cardiovascular development. Among the compounds used in the clinic for COVD-19 treatment, we found that Remdesivir led to reduced body size and heart functionality at clinically relevant doses. Ritonavir and Baricitinib showed reduced heart functionality and Molnupiravir and Baricitinib showed effects on embryo activity. Sabizabulin was highly toxic at concentrations only 5 times higher than Cmax and led to a mean mortality of 20% at Cmax. Furthermore, we tested if zebrafish could be used as a model to study inflammatory response in response to spike protein treatment and found that Remdesivir, Ritonavir, Molnupiravir, Baricitinib as well as Sabizabulin counteracted the inflammatory response related gene expression upon SARS-CoV-2 spike protein treatment. Our results show that the zebrafish allows to study immune-modulating properties of COVID-19 compounds and highlights the need to rule out secondary defects of compound treatment on embryogenesis. All results are available on a user friendly web-interface https://share.streamlit.io/alernst/covasc_dataapp/main/CoVasc_DataApp.py that provides a comprehensive overview of all observed phenotypic effects and allows personalized search on specific compounds or group of compounds. Furthermore, the presented platform can be expanded for rapid detection of developmental side effects of new compounds for treatment of COVID-19 and further viral infectious diseases.


Assuntos
Antivirais , Desenvolvimento Embrionário , Animais , Feminino , Humanos , Gravidez , Antivirais/farmacologia , COVID-19 , Tratamento Farmacológico da COVID-19 , Desenvolvimento Embrionário/efeitos dos fármacos , Ritonavir/farmacologia , SARS-CoV-2 , Peixe-Zebra , Embrião não Mamífero/efeitos dos fármacos
2.
Front Cell Dev Biol ; 10: 824851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242762

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first identified in December 2019 as a novel respiratory pathogen and is the causative agent of Corona Virus disease 2019 (COVID-19). Early on during this pandemic, it became apparent that SARS-CoV-2 was not only restricted to infecting the respiratory tract, but the virus was also found in other tissues, including the vasculature. Individuals with underlying pre-existing co-morbidities like diabetes and hypertension have been more prone to develop severe illness and fatal outcomes during COVID-19. In addition, critical clinical observations made in COVID-19 patients include hypercoagulation, cardiomyopathy, heart arrythmia, and endothelial dysfunction, which are indicative for an involvement of the vasculature in COVID-19 pathology. Hence, this review summarizes the impact of SARS-CoV-2 infection on the vasculature and details how the virus promotes (chronic) vascular inflammation. We provide a general overview of SARS-CoV-2, its entry determinant Angiotensin-Converting Enzyme II (ACE2) and the detection of the SARS-CoV-2 in extrapulmonary tissue. Further, we describe the relation between COVID-19 and cardiovascular diseases (CVD) and their impact on the heart and vasculature. Clinical findings on endothelial changes during COVID-19 are reviewed in detail and recent evidence from in vitro studies on the susceptibility of endothelial cells to SARS-CoV-2 infection is discussed. We conclude with current notions on the contribution of cardiovascular events to long term consequences of COVID-19, also known as "Long-COVID-syndrome". Altogether, our review provides a detailed overview of the current perspectives of COVID-19 and its influence on the vasculature.

3.
Zebrafish ; 18(4): 252-264, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34227897

RESUMO

Metals and metalloids are integral to biological processes and play key roles in physiology and metabolism. Nonetheless, overexposure to some metals or lack of others can lead to serious health consequences. In this study, eight zebrafish facilities collaborated to generate a multielement analysis of their centralized recirculating water systems. We report a first set of average concentrations for 46 elements detected in zebrafish facilities. Our results help to establish an initial baseline for trouble-shooting purposes, and in general for safe ranges of metal concentrations in recirculating water systems, supporting reproducible scientific research outcomes with zebrafish.


Assuntos
Metaloides , Poluentes Químicos da Água , Animais , Metaloides/análise , Metaloides/metabolismo , Água , Poluentes Químicos da Água/análise , Peixe-Zebra/metabolismo
4.
Cell Rep ; 28(5): 1296-1306.e6, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31365871

RESUMO

Organ regeneration is preceded by the recruitment of innate immune cells, which play an active role during repair and regrowth. Here, we studied macrophage subtypes during organ regeneration in the zebrafish, an animal model with a high regenerative capacity. We identified a macrophage subpopulation expressing Wilms tumor 1b (wt1b), which accumulates within regenerating tissues. This wt1b+ macrophage population exhibited an overall pro-regenerative gene expression profile and different migratory behavior compared to the remainder of the macrophages. Functional studies showed that wt1b regulates macrophage migration and retention at the injury area. Furthermore, wt1b-null mutant zebrafish presented signs of impaired macrophage differentiation, delayed fin growth upon caudal fin amputation, and reduced cardiomyocyte proliferation following cardiac injury that correlated with altered macrophage recruitment to the regenerating areas. We describe a pro-regenerative macrophage subtype in the zebrafish and a role for wt1b in organ regeneration.


Assuntos
Nadadeiras de Animais/fisiologia , Coração/fisiologia , Macrófagos/metabolismo , Regeneração , Proteínas WT1/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Macrófagos/citologia , Proteínas WT1/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
5.
Nat Commun ; 9(1): 3090, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082823

RESUMO

The H2.0-like homeobox transcription factor (HLX) regulates hematopoietic differentiation and is overexpressed in Acute Myeloid Leukemia (AML), but the mechanisms underlying these functions remain unclear. We demonstrate here that HLX overexpression leads to a myeloid differentiation block both in zebrafish and human hematopoietic stem and progenitor cells (HSPCs). We show that HLX overexpression leads to downregulation of genes encoding electron transport chain (ETC) components and upregulation of PPARδ gene expression in zebrafish and human HSPCs. HLX overexpression also results in AMPK activation. Pharmacological modulation of PPARδ signaling relieves the HLX-induced myeloid differentiation block and rescues HSPC loss upon HLX knockdown but it has no effect on AML cell lines. In contrast, AMPK inhibition results in reduced viability of AML cell lines, but minimally affects myeloid progenitors. This newly described role of HLX in regulating the metabolic state of hematopoietic cells may have important therapeutic implications.


Assuntos
Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/fisiologia , Leucemia Mieloide Aguda/metabolismo , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Autofagia , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Regulação Leucêmica da Expressão Gênica , Hematopoese , Proteínas de Homeodomínio/genética , Humanos , Células K562 , Leucemia Mieloide Aguda/genética , Potencial da Membrana Mitocondrial , PPAR gama/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
Sci Rep ; 8(1): 5503, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615809

RESUMO

TAGLN is an actin-binding protein family that comprises three isoforms with theorized roles in smooth muscle differentiation, tumour development, lymphocyte activation, and brain chemistry. However, their fundamental characteristics in regulation of the actin-based cytoskeleton are not fully understood. Here we show that TAGLN2 (including TAGLN1 and TAGLN3) extensively nucleates G-actin polymerization under low-salt conditions, where polymerization would be completely suppressed. The calponin homology domain and actin-binding loop are essential to mechanically connect two adjacent G-actins, thereby mediating multimeric interactions. However, TAGLN2 blocked the Arp2/3 complex binding to actin filaments under physiological salt conditions, thereby inhibiting branched actin nucleation. In HeLa and T cells, TAGLN2 enhanced filopodium-like membrane protrusion. Collectively, the dual functional nature of TAGLN2-G-actin polymerization and Arp2/3 complex inhibition-may account for the mechanisms of filopodia development at the edge of Arp2/3-rich lamellipodia in various cell types.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/química , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Multimerização Proteica , Animais , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Estrutura Quaternária de Proteína , Transporte Proteico , Pseudópodes/metabolismo
7.
J Cell Biol ; 209(1): 143-62, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25869671

RESUMO

The formation of an immunological synapse (IS) requires tight regulation of actin dynamics by many actin polymerizing/depolymerizing proteins. However, the significance of actin stabilization at the IS remains largely unknown. In this paper, we identify a novel function of TAGLN2--an actin-binding protein predominantly expressed in T cells--in stabilizing cortical F-actin, thereby maintaining F-actin contents at the IS and acquiring LFA-1 (leukocyte function-associated antigen-1) activation after T cell receptor stimulation. TAGLN2 blocks actin depolymerization and competes with cofilin both in vitro and in vivo. Knockout of TAGLN2 (TAGLN2(-/-)) reduced F-actin content and destabilized F-actin ring formation, resulting in decreased cell adhesion and spreading. TAGLN2(-/-) T cells displayed weakened cytokine production and cytotoxic effector function. These findings reveal a novel function of TAGLN2 in enhancing T cell responses by controlling actin stability at the IS.


Assuntos
Citoesqueleto de Actina/metabolismo , Sinapses Imunológicas/metabolismo , Proteínas dos Microfilamentos/fisiologia , Proteínas Musculares/fisiologia , Fatores de Despolimerização de Actina/metabolismo , Animais , Ligação Competitiva , Células CHO , Cricetinae , Cricetulus , Humanos , Sinapses Imunológicas/ultraestrutura , Células Jurkat , Ativação Linfocitária , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica
8.
Food Chem Toxicol ; 62: 23-31, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23941771

RESUMO

Aplotaxene, (8Z, 11Z, 14Z)-heptadeca-1, 8, 11, 14-tetraene, is one of the major components of essential oil obtained from Inula helenium root, which is used in Oriental medicine. However, the effects of aplotaxene on immunity have not been investigated. Here, we show that aplotaxene inhibits T cell activation in terms of IL-2 and CD69 expression. Aplotaxene, at a concentration that optimally inhibits IL-2 production, has little effect on apoptotic or necrotic cell death, suggesting that apoptosis is not a mechanism for aplotaxene-mediated inhibition of T cell activation. Aplotaxene affects neither superantigeninduced conjugate formation between Jurkat T cells and Raji B cells nor clustering of CD3 and LFA-1 at the immunological synapse. Aplotaxene significantly inhibits PKC-θ phosphorylation and translocation to the immunological synapse, and blocks PMA-induced T-cell receptor internalization. Furthermore, aplotaxene leads to inhibition of mitogen-activated protein kinases (JNK, ERK and p38) phosphorylation and NF-κB, NF-AT, and AP-1 promoter activities in Jurkat T cells. Taken together, our findings provide evidence for the immunosuppressive effect of aplotaxene on activated T cells through the modulation of the PKC-θ and MAPK pathways, suggesting that aplotaxene may be a novel immunotherapeutic agent for immunological diseases related to the overactivation of T cells.


Assuntos
Ativação Linfocitária/efeitos dos fármacos , Polienos/farmacologia , Proteína Quinase C/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Interleucina-2/metabolismo , Isoenzimas/metabolismo , Células Jurkat/efeitos dos fármacos , Células Jurkat/imunologia , Células Jurkat/metabolismo , Lectinas Tipo C/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo
9.
PLoS One ; 8(8): e71626, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977092

RESUMO

Protein functions are often revealed by their localization to specialized cellular sites. Recent reports demonstrated that swiprosin-1 is found together with actin and actin-binding proteins in the cytoskeleton fraction of human mast cells and NK-like cells. However, direct evidence of whether swiprosin-1 regulates actin dynamics is currently lacking. We found that swiprosin-1 localizes to microvilli-like membrane protrusions and lamellipodia and exhibits actin-binding activity. Overexpression of swiprosin-1 enhanced lamellipodia formation and cell spreading. In contrast, swiprosin-1 knockdown showed reduced cell spreading and migration. Swiprosin-1 induced actin bundling in the presence of Ca(2+), and deletion of the EF-hand motifs partially reduced bundling activity. Swiprosin-1 dimerized in the presence of Ca(2+) via its coiled-coil domain, and a lysine (Lys)-rich region in the coiled-coil domain was essential for regulation of actin bundling. Consistent with these observations, mutations of the EF-hand motifs and coiled-coil region significantly reduced cell spreading and lamellipodia formation. We provide new evidence of how swiprosin-1 influences cytoskeleton reorganization and cell spreading.


Assuntos
Actinas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Movimento Celular , Citoesqueleto de Actina/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Adesão Celular , Linhagem Celular , Motivos EF Hand , Humanos , Lisina/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Pseudópodes/metabolismo , Deleção de Sequência
10.
Immune Netw ; 12(3): 71-83, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22916042

RESUMO

T cell activation and function require physical contact with antigen presenting cells at a specialized junctional structure known as the immunological synapse. Once formed, the immunological synapse leads to sustained T cell receptor-mediated signalling and stabilized adhesion. High resolution microscopy indeed had a great impact in understanding the function and dynamic structure of immunological synapse. Trends of recent research are now moving towards understanding the mechanical part of immune system, expanding our knowledge in mechanosensitivity, force generation, and biophysics of cell-cell interaction. Actin cytoskeleton plays inevitable role in adaptive immune system, allowing it to bear dynamic and precise characteristics at the same time. The regulation of mechanical engine seems very complicated and overlapping, but it enables cells to be very sensitive to external signals such as surface rigidity. In this review, we focus on actin regulators and how immune cells regulate dynamic actin rearrangement process to drive the formation of immunological synapse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA