Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928422

RESUMO

This study investigated the potential of selected compounds as inhibitors of SARS-CoV-2 Mpro through pharmacokinetic and toxicological analyses, molecular docking, and molecular dynamics simulations. In silico molecular docking simulations revealed promising ligands with favorable binding affinities for Mpro, ranging from -6.2 to -9.5 kcal/mol. Moreover, molecular dynamics simulations demonstrated the stability of protein-ligand complexes over 200 ns, maintaining protein secondary structures. MM-PBSA analysis revealed favorable interactions between ligands and Mpro, with negative binding energy values. Hydrogen bond formation capacity during molecular dynamics was confirmed, indicating consistent interactions with Mpro catalytic residues. Based on these findings, selected ligands show promise for future studies in developing COVID-19 treatments.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , Humanos , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Antivirais/química , Antivirais/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligação de Hidrogênio , Ligantes , COVID-19/virologia , Ligação Proteica
2.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077329

RESUMO

Aedes aegypti mosquitoes transmit several human pathogens that cause millions of deaths worldwide, mainly in Latin America. The indiscriminate use of insecticides has resulted in the development of species resistance to some such compounds. Piperidine, a natural alkaloid isolated from Piper nigrum, has been used as a hit compound due to its larvicidal activity against Aedes aegypti. In the present study, piperidine derivatives were studied through in silico methods: pharmacophoric evaluation (PharmaGist), pharmacophoric virtual screening (Pharmit), ADME/Tox prediction (Preadmet/Derek 10.0®), docking calculations (AutoDock 4.2) and molecular dynamics (MD) simulation on GROMACS-5.1.4. MP-416 and MP-073 molecules exhibiting ΔG binding (MMPBSA -265.95 ± 1.32 kJ/mol and -124.412 ± 1.08 kJ/mol, respectively) and comparable to holo (ΔG binding = -216.21 ± 0.97) and pyriproxyfen (a well-known larvicidal, ΔG binding= -435.95 ± 2.06 kJ/mol). Considering future in vivo assays, we elaborated the theoretical synthetic route and made predictions of the synthetic accessibility (SA) (SwissADME), lipophilicity and water solubility (SwissADME) of the promising compounds identified in the present study. Our in silico results show that MP-416 and MP-073 molecules could be potent insecticides against the Aedes aegypti mosquitoes.


Assuntos
Aedes , Inseticidas , Animais , Biologia Computacional , Humanos , Inseticidas/farmacologia , Hormônios Juvenis , Larva , Piperidinas/farmacologia , Extratos Vegetais/farmacologia
3.
Chem Biodivers ; 18(10): e2100493, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34403573

RESUMO

Hundreds of millions of people worldwide are affected by Chagas' disease caused by Trypanosoma cruzi. Since the current treatment lack efficacy, specificity, and suffers from several side-effects, novel therapeutics are mandatory. Natural products from endophytic fungi have been useful sources of lead compounds. In this study, three lactones isolated from an endophytic strain culture were in silico evaluated for rational guidance of their bioassay screening. All lactones displayed in vitro activity against T. cruzi epimastigote and trypomastigote forms. Notably, the IC50 values of (+)-phomolactone were lower than benznidazole (0.86 vs. 30.78 µM against epimastigotes and 0.41 vs. 4.88 µM against trypomastigotes). Target-based studies suggested that lactones displayed their trypanocidal activities due to T. cruzi glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH) inhibition, and the binding free energy for all three TcGAPDH-lactone complexes suggested that (+)-phomolactone has a lower score value (-3.38), corroborating with IC50 assays. These results highlight the potential of these lactones for further anti-T. cruzi drug development.


Assuntos
Produtos Biológicos/farmacologia , Euphorbia/química , Lactonas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Euphorbia/metabolismo , Lactonas/química , Lactonas/metabolismo , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Filogenia , Tripanossomicidas/química , Tripanossomicidas/metabolismo
4.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769170

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has received global attention due to the serious threat it poses to public health. Since the outbreak in December 2019, millions of people have been affected and its rapid global spread has led to an upsurge in the search for treatment. To discover hit compounds that can be used alone or in combination with repositioned drugs, we first analyzed the pharmacokinetic and toxicological properties of natural products from Brazil's semiarid region. After, we analyzed the site prediction and druggability of the SARS-CoV-2 main protease (Mpro), followed by docking and molecular dynamics simulation. The best SARS-CoV-2 Mpro complexes revealed that other sites were accessed, confirming that our approach could be employed as a suitable starting protocol for ligand prioritization, reinforcing the importance of catalytic cysteine-histidine residues and providing new structural data that could increase the antiviral development mainly against SARS-CoV-2. Here, we selected 10 molecules that could be in vitro assayed in response to COVID-19. Two compounds (b01 and b02) suggest a better potential for interaction with SARS-CoV-2 Mpro and could be further studied.


Assuntos
Produtos Biológicos/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/efeitos dos fármacos , Desenho de Fármacos , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/efeitos dos fármacos
5.
J Biomol Struct Dyn ; 41(21): 12000-12015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36703608

RESUMO

Dental caries is a global public health problem, being the most common non-communicable disease. Streptococcus mutans, the causative agent of human cariogenic dental biofilms, produce glycosyltransferases (Gtfs) whose gene expression is modulated by the VicRK system, which makes them a promising target for dental biofilm inhibitor developments. Bioinformatics have playing a significant role in drug discovery programs mainly in novel hit identification. In this study, potential inhibitors against the S. mutans VicK system have been identified through Structure-based Virtual Screening performed between the VicK druggable sites followed byMolecular Dynamic simulations (MD) with binding affinity analysis by MM-PBSA approach. First, VicK protein was downloaded from PDB, and druggability analyses were performed by PockDrug and FTMap servers describing three interaction sites (S1, S2, and S3) that covered the most important domains for stability and activity. Next, a catechol virtual screening (n = 383) was performed on AutoDock4.2, and better-docked catechols showed strong binding affinity interaction through hydrogen bonding, hydrophobic interactions, and π-stacking with VicK auto kinase and phosphatase activity sites. Ligand efficiency indexes were also calculated (LE, LELP, LLE, and BEI) and showed optimal values. Furthermore, a 200 ns MD simulation run showed stability (RMSD and RMSF) and a high number of hydrogen bonds into peltatoside and maritimein, the two best VicK complexes. These results supported that catechols could potentially inhibit exopolysaccharides synthesis and be used in the biofilm management of new anti-cariogenic and antimicrobial agents.


Assuntos
Anti-Infecciosos , Cárie Dentária , Humanos , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Biofilmes , Descoberta de Drogas
6.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375827

RESUMO

Alzheimer's Disease (AD) is a neurodegenerative condition characterized by progressive memory loss and other affected cognitive functions. Pharmacological therapy of AD relies on inhibitors of the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), offering only a palliative effect and being incapable of stopping or reversing the neurodegenerative process. However, recent studies have shown that inhibiting the enzyme ß-secretase 1 (BACE-1) may be able to stop neurodegeneration, making it a promising target. Considering these three enzymatic targets, it becomes feasible to apply computational techniques to guide the identification and planning of molecules capable of binding to all of them. After virtually screening 2119 molecules from a library, 13 hybrids were built and further screened by triple pharmacophoric model, molecular docking, and molecular dynamics (t = 200 ns). The selected hybrid G meets all stereo-electronic requirements to bind to AChE, BChE, and BACE-1 and offers a promising structure for future synthesis, enzymatic testing, and validation.

7.
Nat Prod Res ; : 1-6, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37585697

RESUMO

A new cyclic natural compound formed by succinic acid and two alanine amino acid units was isolated from the Tetragonisca angustula honey extract. The chemical structure of 1 was established based on spectroscopic data analysis, including one- (1H and 13C NMR) and two-dimensional NMR techniques (1H-1H-COSY, HSQC and HMBC). A primary culture model previously infected with Neospora caninum was used to evaluate 1 for two time intervals (24 and 72 h), showing a reduction (40-56%) of the number of tachyzoites in the first 24 h and until 72 h, a dose-dependent reduction in parasite proliferation (25-50%). Glial cells treated with 1 did not demonstrate toxicity at concentrations up to 25 ug/mL. Treated and infected cultures showed an increase in NO when compared to control cells in 24 h and 72 h. In silico studies suggest that the new compound may affect DNA synthesis and impair -protein production.

8.
J Biomol Struct Dyn ; 40(20): 9592-9601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34180379

RESUMO

Sickle cell disease (SCD) is a disease resulting from mutation in the globin portion of hemoglobin caused by the replacement of adenine for thymine in the codon of the ß globin gene. In Brazil, SCD affects about 0.3% of the black and Caucasian population. Until now, there is no specific treatment and the available drugs have several serious adverse effects which makes the search for new drugs an emergently need. The use of computational techniques can accelerate the drug development process by prioritization of molecules with affinity against essential targets. Adenosine A2b receptor (rA2b) has been studied in SCD due to its relationship with red blood cells concentration of 2,3-diphosphoglycerate which reduces the hemoglobin affinity for oxygen (O2), facilitating its availability for the tissues. Then, development of rA2b antagonists could be helpful for the treatment of SCD. However, there is still no 3D structure of rA2b and to overcome this limitation, homology modeling should be applied. In this scenario, this study aims to build a suitable 3D model of rA2b by SWISS MODEL and to evaluate the structural aspects of rA2b with known antagonists that may be useful for the identification of new potential antagonists by molecular dynamics on a lipid bilayer environment using GROMACS 5.1.4. The complexes with antagonists ZINC223070016 and ZINC17974526 interacted with key residues by hydrophobic contacts and hydrogen bonds which stabilized them at the rA2b binding site. This intermolecular profile can contribute to the development of more potent rA2b antagonists. Communicated by Ramaswamy H. Sarma.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Anemia Falciforme , Humanos , Antagonistas do Receptor A2 de Adenosina/química , Receptor A2B de Adenosina/química , Anemia Falciforme/tratamento farmacológico , Simulação de Dinâmica Molecular , Ligação de Hidrogênio
9.
Nat Prod Res ; 36(4): 999-1003, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33146027

RESUMO

The present work describes the acetylcholinesterase inhibitory activity of Ocotea pomaderroides extracts besides the chemical composition of chromatographic fractions. The hexane, dichloromethane and ethyl acetate extract soluble fractions showed high Electrophorus electricus acetylcholinesterase (EelAChE) inhibition (92.18, 71.86 and 74.25%, respectively) while the butanolic and aqueous extracts showed moderate to low activities (44.48 and 20.74%, respectively). The high-performance liquid chromatography coupled with electrospray ionization multiple-stage mass spectrometry (HPLC-ESI-MSn) analysis led to the identification of the alkaloids and flavonol glycoside derivatives present in these extracts. The binding profile of the alkaloids and their atomic effect on 3D structure of Electrophorus electricus AchE (EelAChE) were assessed with molecular modeling.


Assuntos
Inibidores da Colinesterase/farmacologia , Ocotea , Extratos Vegetais , Acetilcolinesterase/metabolismo , Cromatografia Líquida de Alta Pressão , Ocotea/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
10.
J Biomol Struct Dyn ; 40(24): 14223-14235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34766882

RESUMO

The past two decades have been marked by a global spread of bacterial resistance to ß-lactam drugs and carbapenems derivatives are the ultimate treatment against multidrug-resistant bacteria. ß-lactamase expression is related to resistance which demands the development of bacterial resistance blockers. Drug inhibitor combinations of serine-ß-lactamase and ß-lactam were successful employed in therapy despite their inactivity against New Delhi metallo-beta-lactamase (NDM). Until now, few compounds are active against NDM-producing bacteria and no specific inhibitors are available yet. The rational strategy for NDM inhibitors development starts with in vitro assays aiming to seek compounds that could act synergistically with ß-lactam antibiotics. Thus, eight thiosemicarbazone derivatives were synthesized and investigated for their ability to reverse the resistant phenotype in NDM in Enterobacter cloacae. Phenotypic screening indicated that four isatin-beta-thiosemicarbazones showed Fractional Inhibitory Concentration (FIC) ≤ 250 µM in the presence of meropenem (4 µg/mL). The most promising compound (FIC= 31.25 µM) also presented synergistic effect (FICI = 0.34). Docking and molecular dynamics studies on NDM-thiosemicarbazone complex suggested that 2,3-dihydro-1H-indol-2-one subunit interacts with catalytic zinc and interacted through hydrogen bonds with Asp124 acting like a carboxylic acid bioisostere. Additionally, thiosemicarbazone tautomer with oxidized sulfur (thione) seems to act as a spacer rather than zinc chelator, and the aromatic moieties are stabilized by pi-pi and cation-pi interactions with His189 and Lys221 residues. Our results addressed some thiosemicarbazone structural changes to increase its biological activity against NDM and highlight its scaffold as promising alternatives to treat bacterial resistance.Communicated by Ramaswamy H. Sarma.


Assuntos
Antibacterianos , Tiossemicarbazonas , Antibacterianos/farmacologia , Antibacterianos/química , Tiossemicarbazonas/farmacologia , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia , Fenótipo , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Testes de Sensibilidade Microbiana
11.
Neurotox Res ; 40(6): 2135-2147, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35997936

RESUMO

Studies showed that JM-20, a benzodiazepine-dihydropyridine hybrid molecule, protects against rotenone and 6-hydroxydopamine neurotoxicity. However, its protective effects against cytotoxicity induced by endogenous neurotoxins involved in Parkinson's disease (PD) pathogenesis have never been investigated. In this study, we evaluated the ability of JM-20 to inhibit alpha-synuclein (aSyn) aggregation. We also evaluated the interactions of JM-20 with aSyn by molecular docking and molecular dynamics and assessed the protective effect of JM-20 against aminochrome cytotoxicity. We demonstrated that JM-20 induced the formation of heterogeneous amyloid fibrils, which were innocuous to primary cultures of mesencephalic cells. Moreover, JM-20 reduced the average size of aSyn positive inclusions in H4 cells transfected with SynT wild-type and synphilin-1-V5, but not in HEK cells transfected with synphilin-1-GFP. In silico studies showed the interaction between JM-20 and the aSyn-binding site. Additionally, we showed that JM-20 protects SH-SY5Y cells against aminochrome cytotoxicity. These results reinforce the potential of JM-20 as a neuroprotective compound for PD and suggest aSyn as a molecular target for JM-20.


Assuntos
Di-Hidropiridinas , Neuroblastoma , Doença de Parkinson , Humanos , alfa-Sinucleína , Benzodiazepinas , Simulação de Acoplamento Molecular , Doença de Parkinson/tratamento farmacológico
12.
J Biomol Struct Dyn ; 39(18): 7000-7016, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32794433

RESUMO

The visceral form of Leishmaniasis, also known as kala-azar, caused by Leishmania chagasi is the main etiological agent of this form in Brazil responsible for 30,000 annual deaths. Despite its epidemiological impact, treatment of the disease is limited by resistance, species-dependent efficacy and serious adverse effects. The application of computational tools to prioritize potential bioactive molecules based on 3D structural of biological target is a viable alternative. Among the L. chagasi validated targets, Fe + 2 superoxide dismutase B2 (LcFeSODB2) is the first parasite enzyme against oxidative stress and it is involved in essential metabolic processes for its survival. Due to substrate binding-site volume (superoxide ion) and consequent difficulty in its active site modulation for small molecules, the search for allosteric sites at LcFeSODB2 3D structure is a promising strategy. As there are no 3D structures of LcFeSODB2, comparative modeling was applied to build 3D models by SWISS-MODEL and MODELLER version 9.19. Next, the best 3D model was used in molecular dynamics (MD) routines with multiple probes on GROMACS version 5.1.2. In addition, potential allosteric sites predicted by FTMap and Metapocket web servers were used with probe occupancy maps from MD to select an allosteric binding site and propose a pharmacophore model. Next, it was used as a template in virtual screening by UNITY® module available on SYBYL-X version 2.1.1 at Sigma-Aldrich CPR™ subset of ZINC12 database. The pharmacophore-based virtual screening resulted in the selection of two potential allosteric LcFeSOD compounds with partial pharmacophoric requirements, drug-like properties and commercial availability for enzymatic assays. Communicated by Ramaswamy H. Sarma.


Assuntos
Leishmania infantum , Simulação de Dinâmica Molecular , Superóxido Dismutase/antagonistas & inibidores , Sítio Alostérico , Leishmania infantum/enzimologia , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade
13.
Ticks Tick Borne Dis ; 12(2): 101643, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33388555

RESUMO

Rhipicephalus microplus is responsible for high economic losses in livestock and its control has become difficult due to the establishment of tick populations resistant to commercial acaricides. This study aimed to evaluate the in vitro larvicidal effect of the alkaloids berberine and piperine, and also to investigate their inhibitory mechanisms against the acetylcholinesterase enzyme. The effects of the alkaloids on larvae were observed through the immersion test at the following concentrations: 1.5; 3; 6; 12; 16 and 24 mM. Berberine and piperine presented larvicidal activity greater than 95 %, not differing from 100 % for the positive fipronil control (p > 0.05). Of the two alkaloids, piperine had a lower effective concentration (EC), with an EC50 of 6.04 mM. The acetylcholinesterase enzyme used in the study was obtained from R. microplus larvae (RmAChE) and the anticholinesterase activity was determined spectrophotometrically. The highest anticholinesterase activity, measured as inhibition concentration (IC), was observed for berberine (IC50 = 88.13 µM), while piperine showed lower activity (IC50 > 200 µM). Docking studies in RmAChE, followed by 10 ns molecular dynamics simulation, suggest that berberine stabilizes the RmAChE at lower Root-Mean-Square Deviation (RMSD) than Apo protein. Few hydrogen-bond interactions between berberine and RmAChE residues were balanced by hydrophobic and π-type interactions. Berberine fills preferentially the peripheral anionic site (PAS), which correlates with its non-competitive mechanism. These results suggest that berberine and piperine alkaloids have an in vitro acaricidal action on R. microplus larvae, and the likely mechanism of action of berberine is related to RmAChE inhibition when accessing the PAS residues. These findings could help the study of new natural products that could inhibit RmAChE and aid in the development of new acaricides.


Assuntos
Acaricidas/farmacologia , Alcaloides/farmacologia , Benzodioxóis/farmacologia , Alcaloides de Berberina/farmacologia , Piperidinas/farmacologia , Extratos Vegetais/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Rhipicephalus/efeitos dos fármacos , Controle de Ácaros e Carrapatos , Animais , Inibidores da Colinesterase/farmacologia , Simulação por Computador , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Rhipicephalus/crescimento & desenvolvimento
14.
Chem Biol Drug Des ; 98(6): 1104-1115, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34614302

RESUMO

Tetragonisca angustula honey was fractioned in a SiO2 column to furnish three fractions (A-C) in which four hydroxycinnamic acid-Spermidine amides (HCAAs), known as N', N″, N‴-tris-p-coumaroyl spermidine, N', N″-dicaffeoyl, N‴-coumaroyl spermidine, N', N″, N‴-tris-caffeoyl spermidine and N', N″-dicaffeoyl and N‴-feruloyl spermidine were identified in the fractions B and C by electrospray ionization tandem mass spectrometry. A primary culture model previously infected with Neospora caninum (72 h) was used to evaluate the honey fractions (A-C) for two-time intervals: 24 and 72 h. Parasitic reduction ranged from 38% on fraction C (12.5 µg/ml), after 24 h, to 54% and 41% with fractions B and C (25 µg/ml) after 72 h of treatment, respectively. Additionally, HCAAs did not show any cell toxicity for 24 and 72 h. For infected cultures (72 h), the active fractions B (12.5 µg/ml) and C (25 µg/ml) decreased their NO content. In silico studies suggest that HCAAs may affect the parasite's redox pathway and improve the oxidative effect of NO released from infected cells. Here, we presented for the first time, that HCAAs from T. angustula honey have the potential to inhibit the growth of N. caninum protozoa.


Assuntos
Antiprotozoários/farmacologia , Abelhas , Mel , Neospora/efeitos dos fármacos , Espermidina/química , Amidas/química , Animais , Antiprotozoários/química , Brasil , Células Cultivadas , Coccidiose/tratamento farmacológico , Simulação por Computador , Ácidos Cumáricos/química , NADH NADPH Oxirredutases/antagonistas & inibidores , Neuroglia/efeitos dos fármacos , Neuroglia/parasitologia , Óxido Nítrico/metabolismo , Ratos Wistar , Espermidina/análise
15.
Glycobiology ; 20(8): 1034-45, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20466651

RESUMO

One of the most interesting aspects of Trypanosoma cruzi is its adaptation to obtain sialic acid from its host, fulfilling this need exclusively through the reaction catalyzed by enzymatically active trans-sialidase (aTS), thought to play an important role in the pathogenesis of Chagas' disease. Herein, we report that 2-difluoromethyl-4-nitrophenyl-3,5-dideoxy-d-glycero-alpha-d-galacto-2-nonulopyranosid acid (NeuNAcFNP) inactivates aTS time- and dose-dependently, and this inhibition was not relieved removing the inhibitor. Also, NeuNAcFNP causes a decrease in infection of mammalian cells. Characterization of labeled aTS by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry revealed that inactivation of the enzyme occurs through formation of a covalent bond between Arg245 and Asp247 and the inhibitor aglycone. Participation of Asp247 in the catalytic mechanism was proved by constructing a TSD247A mutant, which presents only residual activity. Molecular dynamic simulations indicate that the D247A mutation results in a more open catalytic cleft. In summary, NeuNAcFNP is the first reported mechanism-based inhibitor of aTS, representing a new template for drug design and opening new possibilities for chemotherapy of Chagas' disease, as well as for the elucidation of aTS function in T. cruzi pathogenesis and biology.


Assuntos
Inibidores Enzimáticos/farmacologia , Glicoproteínas/antagonistas & inibidores , Interações Hospedeiro-Parasita/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Ácidos Siálicos/farmacologia , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/patogenicidade , Animais , Biocatálise/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Glicoproteínas/química , Glicoproteínas/metabolismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Neuraminidase/química , Neuraminidase/metabolismo , Ácidos Siálicos/química , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos
16.
Appl Biochem Biotechnol ; 190(4): 1498-1511, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31782089

RESUMO

The filamentous fungus Trametes versicolor is a rich source of laccase (Tvlac). Laccases catalyze reactions that convert substituted phenol substrates into diverse derivatives through aromatic oxidation. We investigated methyl p-coumarate, methyl ferulate, and methyl caffeate biotransformation by Trametes versicolor ATCC 200801. Despite substrate similarity, the biotransformation reactions varied widely. Only methyl p-coumarate was converted into three derivatives. We isolated and identified the chemical structures of such derivatives by NMR and IR analysis. Hydroxylation, methylation, and hydrolysis were the main reactions resulting from the studied biotransformation. We also analyzed the interactions between Tvlac (PDB ID: 1GYC) and the three phenolic substrates by molecular docking simulations. The substituents in the phenol ring influenced substrate conformation and orientation in the Tvlac site. The biotransformation reaction selectivity correlated with the different binding energies to the Tvlac site. Our results demonstrated that docking studies successfully predict the biotransformation of cinnamic acid analogs by T. versicolor.


Assuntos
Biotransformação , Simulação de Acoplamento Molecular , Fenóis/química , Polyporaceae/metabolismo , Ácidos Cafeicos/química , Catálise , Cinamatos/química , Recuperação e Remediação Ambiental , Hidrólise , Hidroxilação , Microbiologia Industrial , Lacase/química , Espectroscopia de Ressonância Magnética , Conformação Molecular , Oxigênio/química , Solventes/química , Espectrofotometria Infravermelho
17.
Front Pharmacol ; 11: 590544, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33390966

RESUMO

Leishmaniasis are group of neglected diseases with worldwide distribution that affect about 12 million people. The current treatment is limited and may cause severe adverse effects, and thus, the search for new drugs more effective and less toxic is relevant. We have previously investigated the immunomodulatory effects of LASSBio-1386, an N-acylhydrazone derivative. Here we investigated the in vitro and in vivo activity of LASSBio-1386 against L. amazonensis. LASSBio-1386 inhibited the proliferation of promastigotes of L. amazonensis (EC50 = 2.4 ± 0.48 µM), while presenting low cytotoxicity to macrophages (CC50 = 74.1 ± 2.9 µM). In vitro incubation with LASSBio-1386 reduced the percentage of Leishmania-infected macrophages and the number of intracellular parasites (EC50 = 9.42 ± 0.64 µM). Also, in vivo treatment of BALB/c mice infected with L. amazonensis resulted in a decrease of lesion size, parasitic load and caused histopathological alterations, when compared to vehicle-treated control. Moreover, LASSBio-1386 caused ultrastructural changes, arrested cell cycle in G0/G1 phase and did not alter the membrane mitochondrial potential of L. amazonensis. Aiming to its possible molecular interactions, we performed docking and molecular dynamics studies on Leishmania phosphodiesterase B1 (PDB code: 2R8Q) and LASSBio-1386. The computational analyses suggest that LASSBio-1386 acts against Leishmania through the modulation of leishmanial PDE activity. In conclusion, our results indicate that LASSBio-1386 is a promising candidate for the development of new leishmaniasis treatment.

18.
Rev Bras Parasitol Vet ; 29(2): e019819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32609242

RESUMO

We investigated the in vitro acaricide activity of the methanolic extract (ME) and alkaloid-rich fraction (AF) of Prosopis juliflora on Rhipicephalus microplus and correlated this effect with acetylcholinesterase (AChE) inhibition. The acaricide activity was evaluated using adult and larval immersion tests. Also, we studied the possible interaction mechanism of the major alkaloids present in this fraction via molecular docking at the active site of R. microplus AChE1 (RmAChE1). Higher reproductive inhibitory activity of the AF was recorded, with effective concentration (EC50) four times lower than that of the ME (31.6 versus 121 mg/mL). The AF caused mortality of tick larvae, with lethal concentration 50% (LC50) of 13.8 mg/mL. Both ME and AF were seen to have anticholinesterase activity on AChE of R. microplus larvae, while AF was more active with half-maximal inhibitory concentration (IC50) of 0.041 mg/mL. The LC-MS/MS analyses on the AF led to identification of three alkaloids: prosopine (1), juliprosinine (2) and juliprosopine (3). The molecular docking studies revealed that these alkaloids had interactions at the active site of the RmAChE1, mainly relating to hydrogen bonds and cation-pi interactions. We concluded that the alkaloids of P. juliflora showed acaricide activity on R. microplus and acted through an anticholinesterase mechanism.


Assuntos
Alcaloides , Colinesterases , Extratos Vegetais , Prosopis , Rhipicephalus , Acaricidas/farmacologia , Alcaloides/farmacologia , Animais , Colinesterases/metabolismo , Cromatografia Líquida , Ativação Enzimática/efeitos dos fármacos , Larva , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Prosopis/química , Rhipicephalus/efeitos dos fármacos , Rhipicephalus/enzimologia , Espectrometria de Massas em Tandem
19.
Comput Biol Chem ; 79: 36-47, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30710804

RESUMO

Trypanosoma cruzi Trypanothione Reductase (TcTR) is one of the therapeutic targets studied in the development of new drugs against Chagas' disease. Due to its biodiversity, Brazil has several compounds of natural origin that were not yet properly explored in drug discovery. Therefore, we employed the Virtual Screening against TcTR aiming to discover new inhibitors from the Natural Products Database of the Bahia Semi-Arid region (NatProDB). This database has a wide chemical diversity favoring the discovery of new chemical entities. Subsequently, we analyzed the best docking conformations using self-organizing maps (AuPosSOM) aiming to verify their interaction sites at TcTR. Finally, the Pred-hERG, the Aggregator Advisor, the FAF-DRUGS and the pkCSM results allowed us to evaluate, respectively, the cardiotoxicity, aggregation capacity, presence of false positives (PAINS) and its toxicity. Thus, we selected three molecules that could be tested in in vitro assays in the hope that the computational results reported here would favor the development of new anti-chagasic drugs.


Assuntos
Antiprotozoários/farmacologia , Produtos Biológicos/farmacologia , Simulação por Computador , Bases de Dados de Compostos Químicos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Brasil , Doença de Chagas/tratamento farmacológico , Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , NADH NADPH Oxirredutases/metabolismo , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Trypanosoma cruzi/enzimologia
20.
Comput Biol Chem ; 83: 107129, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31606587

RESUMO

In vitro acetylcholinesterase activities of the hexane, dichloromethane, ethyl acetate, n-butanol and aqueous extracts of leaves of Ocotea percoriacea Kosterm. (Lauraceae) were evaluated. The bioguided fractionation of the most active extract (dichloromethane) using silica gel open-column chromatography led to an active alkaloidal fraction composed of isocorydine N-oxide, isocorydine N-oxide derivative, palmatine, roemerine and roemerine N-Oxide. The identification of the chemical structure of these compounds was carried out with high-performance liquid chromatography coupled to electrospray ionization multiple-stage mass spectrometry (HPLC-ESI-MS/MS). Aiming to understand their inhibitory activities, these alkaloids were docked into a 3D model of Electrophorus electricus Acetylcholinesterase (EelAChE) built in the Modeller 9.18 employing homology modeling approach. The results suggest that the alkaloids had the same binding mode and, possibly, the inhibition mechanism of classic drugs (ex. tacrine and donepezil). The structural difference of these compounds opens a new opportunity for the optimization of leading compounds.


Assuntos
Acetilcolinesterase/metabolismo , Alcaloides/farmacologia , Inibidores da Colinesterase/farmacologia , Modelos Moleculares , Ocotea/química , Extratos Vegetais/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Electrophorus , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA