Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
2.
IEEE Signal Process Lett ; 22(12): 2269-2273, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31402834

RESUMO

We present a scheme that propagates a reference skeletal model (s-rep) into a particular case of an object, thereby propagating the initial shape-related layout of the skeleton-to-boundary vectors, called spokes. The scheme represents the surfaces of the template as well as the target objects by spherical harmonics and computes a warp between these via a thin plate spline. To form the propagated s-rep, it applies the warp to the spokes of the template s-rep and then statistically refines. This automatic approach promises to make s-rep fitting robust for complicated objects, which allows s-rep based statistics to be available to all. The improvement in fitting and statistics is significant compared with the previous methods and in statistics compared with a state-of-the-art boundary based method.

3.
Rep U S ; 2023: 6593-6600, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38947248

RESUMO

Bronchoscopy is currently the least invasive method for definitively diagnosing lung cancer, which kills more people in the United States than any other form of cancer. Successfully diagnosing suspicious lung nodules requires accurate localization of the bronchoscope relative to a planned biopsy site in the airways. This task is challenging because the lung deforms intraoperatively due to respiratory motion, the airways lack photometric features, and the anatomy's appearance is repetitive. In this paper, we introduce a real-time camera-based method for accurately localizing a bronchoscope with respect to a planned needle insertion pose. Our approach uses deep learning and accounts for deformations and overcomes limitations of global pose estimation by estimating pose relative to anatomical landmarks. Specifically, our learned model considers airway bifurcations along the airway wall as landmarks because they are distinct geometric features that do not vary significantly with respiratory motion. We evaluate our method in a simulated dataset of lungs undergoing respiratory motion. The results show that our method generalizes across patients and localizes the bronchoscope with accuracy sufficient to access the smallest clinically-relevant nodules across all levels of respiratory deformation, even in challenging distal airways. Our method could enable physicians to perform more accurate biopsies and serve as a key building block toward accurate autonomous robotic bronchoscopy.

4.
Front Comput Sci ; 42022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37692198

RESUMO

Objects and object complexes in 3D, as well as those in 2D, have many possible representations. Among them skeletal representations have special advantages and some limitations. For the special form of skeletal representation called "s-reps," these advantages include strong suitability for representing slabular object populations and statistical applications on these populations. Accomplishing these statistical applications is best if one recognizes that s-reps live on a curved shape space. Here we will lay out the definition of s-reps, their advantages and limitations, their mathematical properties, methods for fitting s-reps to single- and multi-object boundaries, methods for measuring the statistics of these object and multi-object representations, and examples of such applications involving statistics. While the basic theory, ideas, and programs for the methods are described in this paper and while many applications with evaluations have been produced, there remain many interesting open opportunities for research on comparisons to other shape representations, new areas of application and further methodological developments, many of which are explicitly discussed here.

5.
Med Image Anal ; 70: 102020, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33743355

RESUMO

Representing an object by a skeletal structure can be powerful for statistical shape analysis if there is good correspondence of the representations within a population. Many anatomic objects have a genus-zero boundary and can be represented by a smooth unbranching skeletal structure that can be discretely approximated. We describe how to compute such a discrete skeletal structure ("d-s-rep") for an individual 3D shape with the desired correspondence across cases. The method involves fitting a d-s-rep to an input representation of an object's boundary. A good fit is taken to be one whose skeletally implied boundary well approximates the target surface in terms of low order geometric boundary properties: (1) positions, (2) tangent fields, (3) various curvatures. Our method involves a two-stage framework that first, roughly yet consistently fits a skeletal structure to each object and second, refines the skeletal structure such that the shape of the implied boundary well approximates that of the object. The first stage uses a stratified diffeomorphism to produce topologically non-self-overlapping, smooth and unbranching skeletal structures for each object of a population. The second stage uses loss terms that measure geometric disagreement between the skeletally implied boundary and the target boundary and avoid self-overlaps in the boundary. By minimizing the total loss, we end up with a good d-s-rep for each individual shape. We demonstrate such d-s-reps for various human brain structures. The framework is accessible and extensible by clinical users, researchers and developers as an extension of SlicerSALT, which is based on 3D Slicer.


Assuntos
Algoritmos , Encéfalo , Encéfalo/diagnóstico por imagem , Humanos
6.
Med Image Anal ; 72: 102100, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34102478

RESUMO

Colonoscopy is the gold standard for pre-cancerous polyps screening and treatment. The polyp detection rate is highly tied to the percentage of surveyed colonic surface. However, current colonoscopy technique cannot guarantee that all the colonic surface is well examined because of incomplete camera orientations and of occlusions. The missing regions can hardly be noticed in a continuous first-person perspective. Therefore, a useful contribution would be an automatic system that can compute missing regions from an endoscopic video in real-time and alert the endoscopists when a large missing region is detected. We present a novel method that reconstructs dense chunks of a 3D colon in real time, leaving the unsurveyed part unreconstructed. The method combines a standard SLAM system with a depth and pose prediction network to achieve much more robust tracking and less drift. It addresses the difficulties for colonoscopic images of existing simultaneous localization and mapping (SLAM) systems and end-to-end deep learning methods.


Assuntos
Pólipos do Colo , Colonoscopia , Colo/diagnóstico por imagem , Pólipos do Colo/diagnóstico por imagem , Humanos
7.
Front Neurosci ; 14: 561556, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132824

RESUMO

Cerebrospinal fluid (CSF) plays an essential role in early postnatal brain development. Extra-axial CSF (EA-CSF) volume, which is characterized by CSF in the subarachnoid space surrounding the brain, is a promising marker in the early detection of young children at risk for neurodevelopmental disorders. Previous studies have focused on global EA-CSF volume across the entire dorsal extent of the brain, and not regionally-specific EA-CSF measurements, because no tools were previously available for extracting local EA-CSF measures suitable for localized cortical surface analysis. In this paper, we propose a novel framework for the localized, cortical surface-based analysis of EA-CSF. The proposed processing framework combines probabilistic brain tissue segmentation, cortical surface reconstruction, and streamline-based local EA-CSF quantification. The quantitative analysis of local EA-CSF was applied to a dataset of typically developing infants with longitudinal MRI scans from 6 to 24 months of age. There was a high degree of consistency in the spatial patterns of local EA-CSF across age using the proposed methods. Statistical analysis of local EA-CSF revealed several novel findings: several regions of the cerebral cortex showed reductions in EA-CSF from 6 to 24 months of age, and specific regions showed higher local EA-CSF in males compared to females. These age-, sex-, and anatomically-specific patterns of local EA-CSF would not have been observed if only a global EA-CSF measure were utilized. The proposed methods are integrated into a freely available, open-source, cross-platform, user-friendly software tool, allowing neuroimaging labs to quantify local extra-axial CSF in their neuroimaging studies to investigate its role in typical and atypical brain development.

8.
Med Phys ; 35(8): 3584-96, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18777919

RESUMO

Learning probability distributions of the shape of anatomic structures requires fitting shape representations to human expert segmentations from training sets of medical images. The quality of statistical segmentation and registration methods is directly related to the quality of this initial shape fitting, yet the subject is largely overlooked or described in an ad hoc way. This article presents a set of general principles to guide such training. Our novel method is to jointly estimate both the best geometric model for any given image and the shape distribution for the entire population of training images by iteratively relaxing purely geometric constraints in favor of the converging shape probabilities as the fitted objects converge to their target segmentations. The geometric constraints are carefully crafted both to obtain legal, nonself-interpenetrating shapes and to impose the model-to-model correspondences required for useful statistical analysis. The paper closes with example applications of the method to synthetic and real patient CT image sets, including same patient male pelvis and head and neck images, and cross patient kidney and brain images. Finally, we outline how this shape training serves as the basis for our approach to IGRT/ART.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Modelos Anatômicos , Reconhecimento Automatizado de Padrão/métodos , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Cabeça/anatomia & histologia , Cabeça/diagnóstico por imagem , Humanos , Rim/anatomia & histologia , Rim/diagnóstico por imagem , Masculino , Pescoço/anatomia & histologia , Pescoço/diagnóstico por imagem , Pelve/anatomia & histologia , Pelve/diagnóstico por imagem , Radiografia
9.
Proc IEEE Int Symp Biomed Imaging ; 2018: 527-530, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30364770

RESUMO

In recent years there have been many studies indicating that multiple cortical features, extracted at each surface vertex, are promising in the detection of various neurodevelopmental and neurodegenerative diseases. However, with limited datasets, it is challenging to train stable classifiers with such high-dimensional surface data. This necessitates a feature reduction that is commonly accomplished via regional volumetric morphometry from standard brain atlases. However, current regional summaries are not specific to the given age or pathology that is studied, which runs the risk of losing relevant information that can be critical in the classification process. To solve this issue, this paper proposes a novel data-driven approach by extending convolutional neural networks (CNN) for use on non-Euclidean manifolds such as cortical surfaces. The proposed network learns the most powerful features and brain regions from the extracted large dimensional feature space; thus creating a new feature space in which the dimensionality is reduced and feature distributions are better separated. We demonstrate the usability of the proposed surface-CNN framework in an example study classifying Alzheimers disease patients versus normal controls. The high performance in the cross-validation diagnostic results shows the potential of our proposed prediction system.

10.
IEEE Trans Med Imaging ; 37(1): 1-11, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28945591

RESUMO

We present a novel approach for improving the shape statistics of medical image objects by generating correspondence of skeletal points. Each object's interior is modeled by an s-rep, i.e., by a sampled, folded, two-sided skeletal sheet with spoke vectors proceeding from the skeletal sheet to the boundary. The skeleton is divided into three parts: the up side, the down side, and the fold curve. The spokes on each part are treated separately and, using spoke interpolation, are shifted along that skeleton in each training sample so as to tighten the probability distribution on those spokes' geometric properties while sampling the object interior regularly. As with the surface/boundary-based correspondence method of Cates et al., entropy is used to measure both the probability distribution tightness and the sampling regularity, here of the spokes' geometric properties. Evaluation on synthetic and real world lateral ventricle and hippocampus data sets demonstrate improvement in the performance of statistics using the resulting probability distributions. This improvement is greater than that achieved by an entropy-based correspondence method on the boundary points.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Entropia , Hipocampo/diagnóstico por imagem , Humanos , Recém-Nascido , Ventrículos Laterais/diagnóstico por imagem , Imageamento por Ressonância Magnética
11.
Shape Med Imaging (2018) ; 11167: 65-72, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31032495

RESUMO

SlicerSALT is an open-source platform for disseminating state-of-the-art methods for performing statistical shape analysis. These methods are developed as 3D Slicer extensions to take advantage of its powerful underlying libraries. SlicerSALT itself is a heavily customized 3D Slicer package that is designed to be easy to use for shape analysis researchers. The packaged methods include powerful techniques for creating and visualizing shape representations as well as performing various types of analysis.

12.
IEEE Trans Med Imaging ; 26(10): 1379-90, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17948728

RESUMO

Two major factors preventing the routine clinical use of finite-element analysis for image registration are: 1) the substantial labor required to construct a finite-element model for an individual patient's anatomy and 2) the difficulty of determining an appropriate set of finite-element boundary conditions. This paper addresses these issues by presenting algorithms that automatically generate a high quality hexahedral finite-element mesh and automatically calculate boundary conditions for an imaged patient. Medial shape models called m-reps are used to facilitate these tasks and reduce the effort required to apply finite-element analysis to image registration. Encouraging results are presented for the registration of CT image pairs which exhibit deformation caused by pressure from an endorectal imaging probe and deformation due to swelling.


Assuntos
Algoritmos , Inteligência Artificial , Reconhecimento Automatizado de Padrão/métodos , Neoplasias da Próstata/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Técnica de Subtração , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Elasticidade , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional/métodos , Masculino , Modelos Biológicos , Neoplasias da Próstata/fisiopatologia , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Artigo em Inglês | MEDLINE | ID: mdl-29353953

RESUMO

Segmentation is a key task in medical image analysis because its accuracy significantly affects successive steps. Automatic segmentation methods often produce inadequate segmentations, which require the user to manually edit the produced segmentation slice by slice. Because editing is time-consuming, an editing tool that enables the user to produce accurate segmentations by only drawing a sparse set of contours would be needed. This paper describes such a framework as applied to a single object. Constrained by the additional information enabled by the manually segmented contours, the proposed framework utilizes object shape statistics to transform the failed automatic segmentation to a more accurate version. Instead of modeling the object shape, the proposed framework utilizes shape change statistics that were generated to capture the object deformation from the failed automatic segmentation to its corresponding correct segmentation. An optimization procedure was used to minimize an energy function that consists of two terms, an external contour match term and an internal shape change regularity term. The high accuracy of the proposed segmentation editing approach was confirmed by testing it on a simulated data set based on 10 in-vivo infant magnetic resonance brain data sets using four similarity metrics. Segmentation results indicated that our method can provide efficient and adequately accurate segmentations (Dice segmentation accuracy increase of 10%), with very sparse contours (only 10%), which is promising in greatly decreasing the work expected from the user.

14.
Med Image Anal ; 31: 37-45, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26963609

RESUMO

Classifying medically imaged objects, e.g., into diseased and normal classes, has been one of the important goals in medical imaging. We propose a novel classification scheme that uses a skeletal representation to provide rich non-Euclidean geometric object properties. Our statistical method combines distance weighted discrimination (DWD) with a carefully chosen Euclideanization which takes full advantage of the geometry of the manifold on which these non-Euclidean geometric object properties (GOPs) live. Our method is evaluated via the task of classifying 3D hippocampi between schizophrenics and healthy controls. We address three central questions. 1) Does adding shape features increase discriminative power over the more standard classification based only on global volume? 2) If so, does our skeletal representation provide greater discriminative power than a conventional boundary point distribution model (PDM)? 3) Especially, is Euclideanization of non-Euclidean shape properties important in achieving high discriminative power? Measuring the capability of a method in terms of area under the receiver operator characteristic (ROC) curve, we show that our proposed method achieves strongly better classification than both the classification method based on global volume alone and the s-rep-based classification method without proper Euclideanization of non-Euclidean GOPs. We show classification using Euclideanized s-reps is also superior to classification using PDMs, whether the PDMs are first Euclideanized or not. We also show improved performance with Euclideanized boundary PDMs over non-linear boundary PDMs. This demonstrates the benefit that proper Euclideanization of non-Euclidean GOPs brings not only to s-rep-based classification but also to PDM-based classification.


Assuntos
Hipocampo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Esquizofrenia/diagnóstico por imagem , Algoritmos , Humanos , Aumento da Imagem , Aprendizado de Máquina , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Comput Vis Image Underst ; 151: 72-79, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31983868

RESUMO

Statistical analysis of shape representations relies on having good correspondence across a population. Improving correspondence yields improved statistics. Point distribution models (PDMs) are often used to represent object boundaries. Skeletal representations (s-reps) model object widths and boundary directions as well as boundary positions, so they should yield better correspondence. We present two methods: one for continuously interpolating a discretely-sampled skeletal model and one for improving correspondence by using this interpolation to shift skeletal samples to new positions. The interpolation operates by an extension of the mathematics of medial structures. As with Cates' boundary-based method, we evaluate correspondence in terms of regularity and shape-feature population entropies. Evaluation on both synthetic and real data shows that our method both improves correspondence of s-rep models fit to segmented lateral ventricles and that the combined boundary-and-skeletal PDMs implied by these optimized s-reps have better correspondence than optimized boundary PDMs.

16.
Int J Radiat Oncol Biol Phys ; 61(3): 954-60, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15708280

RESUMO

PURPOSE: A controlled observer study was conducted to compare a method for automatic image segmentation with conventional user-guided segmentation of right and left kidneys from planning computerized tomographic (CT) images. METHODS AND MATERIALS: Deformable shape models called m-reps were used to automatically segment right and left kidneys from 12 target CT images, and the results were compared with careful manual segmentations performed by two human experts. M-rep models were trained based on manual segmentations from a collection of images that did not include the targets. Segmentation using m-reps began with interactive initialization to position the kidney model over the target kidney in the image data. Fully automatic segmentation proceeded through two stages at successively smaller spatial scales. At the first stage, a global similarity transformation of the kidney model was computed to position the model closer to the target kidney. The similarity transformation was followed by large-scale deformations based on principal geodesic analysis (PGA). During the second stage, the medial atoms comprising the m-rep model were deformed one by one. This procedure was iterated until no changes were observed. The transformations and deformations at both stages were driven by optimizing an objective function with two terms. One term penalized the currently deformed m-rep by an amount proportional to its deviation from the mean m-rep derived from PGA of the training segmentations. The second term computed a model-to-image match term based on the goodness of match of the trained intensity template for the currently deformed m-rep with the corresponding intensity data in the target image. Human and m-rep segmentations were compared using quantitative metrics provided in a toolset called Valmet. Metrics reported in this article include (1) percent volume overlap; (2) mean surface distance between two segmentations; and (3) maximum surface separation (Hausdorff distance). RESULTS: Averaged over all kidneys the mean surface separation was 0.12 cm, the mean Hausdorff distance was 0.99 cm, and the mean volume overlap for human segmentations was 88.8%. Between human and m-rep segmentations the mean surface separation was 0.18-0.19 cm, the mean Hausdorff distance was 1.14-1.25 cm, and the mean volume overlap was 82-83%. CONCLUSIONS: Overall in this study, the best m-rep kidney segmentations were at least as good as careful manual slice-by-slice segmentations performed by two experienced humans, and the worst performance was no worse than typical segmentations from our clinical setting. The mean surface separations for human-m-rep segmentations were slightly larger than for human-human segmentations but still in the subvoxel range, and volume overlap and maximum surface separation were slightly better for human-human comparisons. These results were expected because of experimental factors that favored comparison of the human-human segmentations. In particular, m-rep agreement with humans appears to have been limited largely by fundamental differences between manual slice-by-slice and true three-dimensional segmentation, imaging artifacts, image voxel dimensions, and the use of an m-rep model that produced a smooth surface across the renal pelvis.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Rim/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Humanos , Rim/anatomia & histologia
17.
Med Phys ; 32(5): 1335-45, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15984685

RESUMO

Deformable shape models (DSMs) comprise a general approach that shows great promise for automatic image segmentation. Published studies by others and our own research results strongly suggest that segmentation of a normal or near-normal object from 3D medical images will be most successful when the DSM approach uses (1) knowledge of the geometry of not only the target anatomic object but also the ensemble of objects providing context for the target object and (2) knowledge of the image intensities to be expected relative to the geometry of the target and contextual objects. The segmentation will be most efficient when the deformation operates at multiple object-related scales and uses deformations that include not just local translations but the biologically important transformations of bending and twisting, i.e., local rotation, and local magnification. In computer vision an important class of DSM methods uses explicit geometric models in a Bayesian statistical framework to provide a priori information used in posterior optimization to match the DSM against a target image. In this approach a DSM of the object to be segmented is placed in the target image data and undergoes a series of rigid and nonrigid transformations that deform the model to closely match the target object. The deformation process is driven by optimizing an objective function that has terms for the geometric typicality and model-to-image match for each instance of the deformed model. The success of this approach depends strongly on the object representation, i.e., the structural details and parameter set for the DSM, which in turn determines the analytic form of the objective function. This paper describes a form of DSM called m-reps that has or allows these properties, and a method of segmentation consisting of large to small scale posterior optimization of m-reps. Segmentation by deformable m-reps, together with the appropriate data representations, visualizations, and user interface, has been implemented in software that accomplishes 3D segmentations in a few minutes. Software for building and training models has also been developed. The methods underlying this software and its abilities are the subject of this paper.


Assuntos
Algoritmos , Inteligência Artificial , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Software , Gráficos por Computador , Simulação por Computador , Elasticidade , Armazenamento e Recuperação da Informação/métodos , Modelos Biológicos , Análise Numérica Assistida por Computador , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Interface Usuário-Computador
18.
Artigo em Inglês | MEDLINE | ID: mdl-26028804

RESUMO

PURPOSE: Improving the shape statistics of medical image objects by generating correspondence of interior skeletal points. DATA: Synthetic objects and real world lateral ventricles segmented from MR images. METHODS: Each object's interior is modeled by a skeletal representation called the s-rep, which is a quadrilaterally sampled, folded 2-sided skeletal sheet with spoke vectors proceeding from the sheet to the boundary. The skeleton is divided into three parts: up-side, down-side and fold-curve. The spokes on each part are treated separately and, using spoke interpolation, are shifted along their skeletal parts in each training sample so as to tighten the probability distribution on those spokes' geometric properties while sampling the object interior regularly. As with the surface-based correspondence method of Cates et al., entropy is used to measure both the probability distribution tightness and sampling regularity. The spokes' geometric properties are skeletal position, spoke length and spoke direction. The properties used to measure the regularity are the volumetric subregions bounded by the spokes, their quadrilateral sub-area and edge lengths on the skeletal surface and on the boundary. RESULTS: Evaluation on synthetic and real world lateral ventricles demonstrated improvement in the performance of statistics using the resulting probability distributions, as compared to methods based on boundary models. The evaluation measures used were generalization, specificity, and compactness. CONCLUSIONS: S-rep models with the proposed improved correspondence provide significantly enhanced statistics as compared to standard boundary models.

19.
IEEE Trans Med Imaging ; 23(8): 995-1005, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15338733

RESUMO

A primary goal of statistical shape analysis is to describe the variability of a population of geometric objects. A standard technique for computing such descriptions is principal component analysis. However, principal component analysis is limited in that it only works for data lying in a Euclidean vector space. While this is certainly sufficient for geometric models that are parameterized by a set of landmarks or a dense collection of boundary points, it does not handle more complex representations of shape. We have been developing representations of geometry based on the medial axis description or m-rep. While the medial representation provides a rich language for variability in terms of bending, twisting, and widening, the medial parameters are not elements of a Euclidean vector space. They are in fact elements of a nonlinear Riemannian symmetric space. In this paper, we develop the method of principal geodesic analysis, a generalization of principal component analysis to the manifold setting. We demonstrate its use in describing the variability of medially-defined anatomical objects. Results of applying this framework on a population of hippocampi in a schizophrenia study are presented.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão , Técnica de Subtração , Inteligência Artificial , Análise por Conglomerados , Gráficos por Computador , Simulação por Computador , Hipocampo/patologia , Humanos , Aumento da Imagem/métodos , Armazenamento e Recuperação da Informação/métodos , Modelos Biológicos , Modelos Estatísticos , Dinâmica não Linear , Análise Numérica Assistida por Computador , Análise de Componente Principal , Reprodutibilidade dos Testes , Esquizofrenia/patologia , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
20.
IEEE Trans Med Imaging ; 22(9): 1163-71, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12956271

RESUMO

The clinical recognition of abnormal vascular tortuosity, or excessive bending, twisting, and winding, is important to the diagnosis of many diseases. Automated detection and quantitation of abnormal vascular tortuosity from three-dimensional (3-D) medical image data would, therefore, be of value. However, previous research has centered primarily upon two-dimensional (2-D) analysis of the special subset of vessels whose paths are normally close to straight. This report provides the first 3-D tortuosity analysis of clusters of vessels within the normally tortuous intracerebral circulation. We define three different clinical patterns of abnormal tortuosity. We extend into 3-D two tortuosity metrics previously reported as useful in analyzing 2-D images and describe a new metric that incorporates counts of minima of total curvature. We extract vessels from MRA data, map corresponding anatomical regions between sets of normal patients and patients with known pathology, and evaluate the three tortuosity metrics for ability to detect each type of abnormality within the region of interest. We conclude that the new tortuosity metric appears to be the most effective in detecting several types of abnormalities. However, one of the other metrics, based on a sum of curvature magnitudes, may be more effective in recognizing tightly coiled, "corkscrew" vessels associated with malignant tumors.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/patologia , Angiografia Cerebral/métodos , Transtornos Cerebrovasculares/diagnóstico , Imageamento Tridimensional/métodos , Angiografia por Ressonância Magnética/métodos , Índice de Gravidade de Doença , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico , Circulação Cerebrovascular , Transtornos Cerebrovasculares/etiologia , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/etiologia , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA