RESUMO
OBJECTIVE: Aicardi Goutières Syndrome (AGS) is a rare genetic interferonopathy associated with diverse multisystemic complications. A critical gap exists in our understanding of its longitudinal, systemic disease burden, complicated by delayed diagnosis. To address this need, real-world data extracted from existing medical records were used to characterize the longitudinal disease burden. METHODS: All subjects (n = 167) with genetically confirmed AGS enrolled in the Myelin Disorders Biorepository Project (MDBP) were included. As available in medical records, information was collected on subject demographics, age of onset, and disease complications. Information from published cases of AGS (2007-2022; n = 129) with individual-level data was also collected. Neurologic severity at the last available encounter was determined by retrospectively assigning the AGS Severity Scale [severe (0-3), moderate (4-8), and mild (9-11)]. RESULTS: The genotype frequency in the natural history cohort was TREX1 (n = 26, 15.6 %), RNASEH2B (n = 50, 29.9 %), RNASEH2C (n = 3, 1.8 %), RNASEH2A (n = 7, 4.2 %), SAMHD1 (n = 25, 15.0 %), ADAR (n = 34, 20.4 %), IFIH1 (n = 19, 11.4 %), and RNU7-1 (n = 3, 1.8 %). The median age of systemic onset was 0.15 years [IQR = 0.67 years; median range by genotype: 0 (TREX1) - 0.62 (ADAR) years], while the median neurological onset was 0.33 years [IQR = 0.82 years; median range by genotype: 0.08 (TREX1) - 0.90 (ADAR) year]. The most common early systemic complications were gastrointestinal, including dysphagia or feeding intolerance (n = 124) and liver abnormalities (n = 67). Among postnatal complications, thrombocytopenia appeared earliest (n = 29, median 0.06 years). Tone abnormalities (axial hypotonia: n = 145, 86.8 %; dystonia: n = 123, 73.7 %), irritability (n = 115, 68.9 %), and gross motor delay (n = 112, 7.1 %) emerged as the most prevalent neurological symptoms. Previously published case reports demonstrated similar patterns. The median AGS score for the entire cohort was 4 (IQR = 7). The most severe neurologic phenotype occurred in TREX1-related AGS (n = 19, median AGS severity score 2, IQR = 2). Time to feeding tube placement, chilblains, early gross motor delay, early cognitive delay, and motor regression were significantly associated with genotype (Fleming-Harrington log-rank: p = 0.0002, p < 0.0001, p = 0.0038, p < 0.0001, p = 0.0001, respectively). Microcephaly, feeding tube placement, and seizures were associated with lower AGS scores (All: Wilcoxon rank sum test, p < 0.0001). Among the qualifying case reports (n = 129), tone abnormalities were the most prevalent disease feature, with spastic quadriplegia reported in 37 of 96 cases (38.5 %) and dystonia in 30 of 96 cases (31.2 %). CONCLUSIONS: AGS is a heterogeneous disease with multi-organ system dysfunction that compounds throughout the clinical course, resulting in profound neurological and extra-neurological disease impact. Systemic symptoms precede neurologic disease features in most cases. Disease onset before the age of one year, microcephaly, feeding tube placement, and seizures were associated with worse neurological outcomes. This work will inform evidence-based clinical monitoring guidelines and clinical trial design.
Assuntos
Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , Humanos , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/complicações , Malformações do Sistema Nervoso/epidemiologia , Feminino , Masculino , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/complicações , Pré-Escolar , Lactente , Criança , Fosfoproteínas/genética , Exodesoxirribonucleases/genética , Estudos Retrospectivos , Adolescente , Ribonuclease H/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Genótipo , Índice de Gravidade de Doença , Mutação , Helicase IFIH1 Induzida por Interferon/genéticaRESUMO
Growing interest in therapeutic development for rare diseases necessitate a systematic approach to the collection and curation of natural history data that can be applied consistently across this group of heterogenous rare diseases. In this study, we discuss the challenges facing natural history studies for leukodystrophies and detail a novel standardized approach to creating a longitudinal natural history study using existing medical records. Prospective studies are uniquely challenging for rare diseases. Delays in diagnosis and overall rarity limit the timely collection of natural history data. When feasible, prospective studies are often cross-sectional rather than longitudinal and are unlikely to capture pre- or early- symptomatic disease trajectories, limiting their utility in characterizing the full natural history of the disease. Therapeutic development in leukodystrophies is subject to these same obstacles. The Global Leukodystrophy Initiative Clinical Trials Network (GLIA-CTN) comprises of a network of research institutions across the United States, supported by a multi-center biorepository protocol, to map the longitudinal clinical course of disease across leukodystrophies. As part of GLIA-CTN, we developed Standard Operating Procedures (SOPs) that delineated all study processes related to staff training, source documentation, and data sharing. Additionally, the SOP detailed the standardized approach to data extraction including diagnosis, clinical presentation, and medical events, such as age at gastrostomy tube placement. The key variables for extraction were selected through face validity, and common electronic case report forms (eCRF) across leukodystrophies were created to collect analyzable data. To enhance the depth of the data, clinical notes are extracted into "original" and "imputed" encounters, with imputed encounter referring to a historic event (e.g., loss of ambulation 3 months prior). Retrospective Functional Assessments were assigned by child neurologists, using a blinded dual-rater approach and score discrepancies were adjudicated by a third rater. Upon completion of extraction, data source verification is performed. Data missingness was evaluated using statistics. The proposed methodology will enable us to leverage existing medical records to address the persistent gap in natural history data within this unique disease group, allow for assessment of clinical trajectory both pre- and post-formal diagnosis, and promote recruitment of larger cohorts.
Assuntos
Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/terapia , Doenças Raras/epidemiologia , Estudos Longitudinais , Estados Unidos , Estudos ProspectivosRESUMO
OBJECTIVE: Metachromatic leukodystrophy (MLD) is a rare neurodegenerative disorder. Emerging therapies are most effective in the presymptomatic phase, and thus defining this window is critical. We hypothesize that early development delay may precede developmental plateau. With the advent of presymptomatic screening platforms and transformative therapies, it is essential to define the onset of neurologic disease. METHODS: The specific ages of gain and loss of developmental milestones were captured from the medical records of individuals affected by MLD. Milestone acquisition was characterized as: on target (obtained before the age limit of 90th percentile plus 2 standard deviations compared to a normative dataset), delayed (obtained after 90th percentile plus 2 standard deviations), or plateau (skills never gained). Regression was defined as the age at which skills were lost. LI-MLD was defined by age at onset before 2.5 years. RESULTS: Across an international cohort, 351 subjects were included (n = 194 LI-MLD subcohort). The median age at presentation of the LI-MLD cohort was 1.4 years (25th-75th %ile: 1.0-1.5). Within the LI-MLD cohort, 75/194 (39%) had developmental delay (or plateau) prior to MLD clinical presentation. Among the LI-MLD cohort with a minimum of 1.5 years of follow-up (n = 187), 73 (39.0%) subjects never attained independent ambulation. Within LI-MLD + delay subcohort, the median time between first missed milestone target to MLD decline was 0.60 years (maximum distance from delay to onset: 1.9 years). INTERPRETATION: Early developmental delay precedes regression in a subset of children affected by LI-MLD, defining the onset of neurologic dysfunction earlier than previously appreciated. The use of realworld data prior to diagnosis revealed an early deviation from typical development. Close monitoring for early developmental delay in presymptomatic individuals may help in earlier diagnosis with important consequences for treatment decisions.
Assuntos
Idade de Início , Deficiências do Desenvolvimento , Leucodistrofia Metacromática , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/patologia , Leucodistrofia Metacromática/genética , Deficiências do Desenvolvimento/diagnóstico , Masculino , Feminino , Pré-Escolar , Lactente , Criança , Adolescente , Estudos de Coortes , Progressão da DoençaRESUMO
Exome sequencing (ES) has emerged as an essential tool in the evaluation of neurodevelopmental disorders (NDD) of unknown etiology. Genome sequencing (GS) offers advantages over ES due to improved detection of structural, copy number, repeat number and non-coding variants. However, GS is less commonly utilized due to higher cost and more intense analysis. Here, we present nine cases of pediatric NDD that were molecularly diagnosed with GS between 2017 and 2022, following non-diagnostic ES. All individuals presented with global developmental delay or regression. Other features present in our cohort included epilepsy, white matter abnormalities, brain malformation and dysmorphic features. Two cases were diagnosed on GS due to newly described gene-disease relationship or variant reclassification (MAPK8IP3, CHD3). Additional features missed on ES that were later detected on GS were: intermediate-size deletions in three cases who underwent ES that were not validated for CNV detection, pathogenic variants within the non-protein coding genes SNORD118 and RNU7-1, pathogenic variant within the promoter region of GJB1, and a coding pathogenic variant within BCAP31 which was not sufficiently covered on ES. GS following non-diagnostic ES led to the identification of pathogenic variants in this cohort of nine cases, four of which would not have been identified by reanalysis alone.
RESUMO
Colony stimulating factor 1 receptor (CSF1R) plays key roles in regulating development and function of the monocyte/macrophage lineage, including microglia and osteoclasts. Mono-allelic mutations of CSF1R are known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an adult-onset progressive neurodegenerative disorder. Here, we report seven affected individuals from three unrelated families who had bi-allelic CSF1R mutations. In addition to early-onset HDLS-like neurological disorders, they had brain malformations and skeletal dysplasia compatible to dysosteosclerosis (DOS) or Pyle disease. We identified five CSF1R mutations that were homozygous or compound heterozygous in these affected individuals. Two of them were deep intronic mutations resulting in abnormal inclusion of intron sequences in the mRNA. Compared with Csf1r-null mice, the skeletal and neural phenotypes of the affected individuals appeared milder and variable, suggesting that at least one of the mutations in each affected individual is hypomorphic. Our results characterized a unique human skeletal phenotype caused by CSF1R deficiency and implied that bi-allelic CSF1R mutations cause a spectrum of neurological and skeletal disorders, probably depending on the residual CSF1R function.
Assuntos
Encéfalo/anormalidades , Leucoencefalopatias/etiologia , Mutação , Osteocondrodisplasias/etiologia , Osteosclerose/etiologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Adolescente , Adulto , Alelos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Feminino , Humanos , Leucoencefalopatias/patologia , Masculino , Camundongos , Camundongos Knockout , Osteocondrodisplasias/patologia , Osteosclerose/patologia , Fenótipo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/fisiologia , Adulto JovemRESUMO
OBJECTIVE: Heterozygous NOTCH3 variants are known to cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), with patients typically presenting in adulthood. We describe three patients presenting at an early age with a vascular leukoencephalopathy. Genome sequencing revealed bi-allelic variants in the NOTCH3 gene. METHODS: Clinical records and available MRI and CT scans of three patients from two unrelated families were retrospectively reviewed. RESULTS: The patients presented at 9 to 14 months of age with developmental delay, seizures, or both. The disease course was characterized by cognitive impairment and variably recurrent strokes, migraine attacks, and seizures. MRI findings pointed at a small vessel disease, with extensive cerebral white matter abnormalities, atrophy, lacunes in the basal ganglia, microbleeds, and microcalcifications. The anterior temporal lobes were spared. Bi-allelic cysteine-sparing NOTCH3 variants in exons 1, 32, and 33 were found. INTERPRETATION: This study indicates that bi-allelic loss-of-function NOTCH3 variants may cause a vascular leukoencephalopathy, distinct from CADASIL.
Assuntos
CADASIL , Leucoencefalopatias , Receptor Notch3 , Adulto , Alelos , CADASIL/diagnóstico por imagem , CADASIL/genética , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Imageamento por Ressonância Magnética , Mutação , Receptor Notch3/genética , Estudos Retrospectivos , ConvulsõesRESUMO
OBJECTIVE: Genome sequencing (GS) is promising for unsolved leukodystrophies, but its efficacy has not been prospectively studied. METHODS: A prospective time-delayed crossover design trial of GS to assess the efficacy of GS as a first-line diagnostic tool for genetic white matter disorders took place between December 1, 2015 and September 27, 2017. Patients were randomized to receive GS immediately with concurrent standard of care (SoC) testing, or to receive SoC testing for 4 months followed by GS. RESULTS: Thirty-four individuals were assessed at interim review. The genetic origin of 2 patient's leukoencephalopathy was resolved before randomization. Nine patients were stratified to the immediate intervention group and 23 patients to the delayed-GS arm. The efficacy of GS was significant relative to SoC in the immediate (5/9 [56%] vs 0/9 [0%]; Wild-Seber, p < 0.005) and delayed (control) arms (14/23 [61%] vs 5/23 [22%]; Wild-Seber, p < 0.005). The time to diagnosis was significantly shorter in the immediate-GS group (log-rank test, p = 0.04). The overall diagnostic efficacy of combined GS and SoC approaches was 26 of 34 (76.5%, 95% confidence interval = 58.8-89.3%) in <4 months, greater than historical norms of <50% over 5 years. Owing to loss of clinical equipoise, the trial design was altered to a single-arm observational study. INTERPRETATION: In this study, first-line GS provided earlier and greater diagnostic efficacy in white matter disorders. We provide an evidence-based diagnostic testing algorithm to enable appropriate clinical GS utilization in this population. ANN NEUROL 2020;88:264-273.
Assuntos
Leucoencefalopatias/diagnóstico , Leucoencefalopatias/genética , Análise de Sequência de DNA/métodos , Criança , Pré-Escolar , Estudos Cross-Over , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Substância Branca/patologiaRESUMO
Leukodystrophies are a heterogeneous group of heritable disorders characterized by abnormal brain white matter signal on magnetic resonance imaging (MRI) and primary involvement of the cellular components of myelin. Previous estimates suggest the incidence of leukodystrophies as a whole to be 1 in 7,000 individuals, however the frequency of specific diagnoses relative to others has not been described. Next generation sequencing approaches offer the opportunity to redefine our understanding of the relative frequency of different leukodystrophies. We assessed the relative frequency of all 30 leukodystrophies (associated with 55 genes) in more than 49,000 exomes. We identified a relatively high frequency of disorders previously thought of as very rare, including Aicardi Goutières Syndrome, TUBB4A-related leukodystrophy, Peroxisomal biogenesis disorders, POLR3-related Leukodystrophy, Vanishing White Matter, and Pelizaeus-Merzbacher Disease. Despite the relative frequency of these conditions, carrier-screening laboratories regularly test only 20 of the 55 leukodystrophy-related genes, and do not test at all, or test only one or a few, genes for some of the higher frequency disorders. Relative frequency of leukodystrophies previously considered very rare suggests these disorders may benefit from expanded carrier screening.
Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Doenças Desmielinizantes/genética , Malformações do Sistema Nervoso/genética , Doença de Pelizaeus-Merzbacher/genética , RNA Polimerase III/genética , Tubulina (Proteína)/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Doenças Desmielinizantes/epidemiologia , Doenças Desmielinizantes/patologia , Exoma/genética , Feminino , Predisposição Genética para Doença , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doenças por Armazenamento dos Lisossomos/epidemiologia , Doenças por Armazenamento dos Lisossomos/genética , Imageamento por Ressonância Magnética , Masculino , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Malformações do Sistema Nervoso/patologia , Doença de Pelizaeus-Merzbacher/epidemiologia , Doença de Pelizaeus-Merzbacher/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologiaRESUMO
Mutations in genes encoding aminoacyl-tRNA synthetases are known to cause leukodystrophies and genetic leukoencephalopathies-heritable disorders that result in white matter abnormalities in the central nervous system. Here we report three individuals (two siblings and an unrelated individual) with severe infantile epileptic encephalopathy, clubfoot, absent deep tendon reflexes, extrapyramidal symptoms, and persistently deficient myelination on MRI. Analysis by whole exome sequencing identified mutations in the nuclear-encoded alanyl-tRNA synthetase (AARS) in these two unrelated families: the two affected siblings are compound heterozygous for p.Lys81Thr and p.Arg751Gly AARS, and the single affected child is homozygous for p.Arg751Gly AARS. The two identified mutations were found to result in a significant reduction in function. Mutations in AARS were previously associated with an autosomal-dominant inherited form of axonal neuropathy, Charcot-Marie-Tooth disease type 2N (CMT2N). The autosomal-recessive AARS mutations identified in the individuals described here, however, cause a severe infantile epileptic encephalopathy with a central myelin defect and peripheral neuropathy, demonstrating that defects of alanyl-tRNA charging can result in a wide spectrum of disease manifestations.
Assuntos
Anormalidades Múltiplas/genética , Alanina-tRNA Ligase/genética , Epilepsia/genética , Modelos Moleculares , Bainha de Mielina/patologia , Doenças do Sistema Nervoso Periférico/genética , Fenótipo , Anormalidades Múltiplas/patologia , Alanina-tRNA Ligase/química , Sequência de Aminoácidos , Sequência de Bases , Epilepsia/patologia , Genes Recessivos/genética , Humanos , Lactente , Recém-Nascido , Dados de Sequência Molecular , Mutação/genética , Doenças do Sistema Nervoso Periférico/patologia , Estudos Prospectivos , Análise de Sequência de DNA , Síndrome , Estados UnidosAssuntos
Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Azetidinas/uso terapêutico , Inibidores de Janus Quinases/uso terapêutico , Malformações do Sistema Nervoso/tratamento farmacológico , Sulfonamidas/uso terapêutico , Adolescente , Idade de Início , Azetidinas/efeitos adversos , Biomarcadores , Criança , Desenvolvimento Infantil/efeitos dos fármacos , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Lactente , Interferons/genética , Interferons/metabolismo , Inibidores de Janus Quinases/efeitos adversos , Análise dos Mínimos Quadrados , Masculino , Purinas , Pirazóis , Sulfonamidas/efeitos adversos , Adulto JovemRESUMO
Early-onset epileptic encephalopathies (EOEEs) are a genetically heterogeneous collection of severe epilepsies often associated with psychomotor regression. Mutations in SZT2, a known seizure threshold regulator gene, are a newly identified cause of EOEE. We present an individual with EOEE, macrocephaly, and developmental regression with compound heterozygous mutations in SZT2 as identified by whole exome sequencing. Serial imaging characterized the novel finding of progressive loss of central myelination. This case expands our clinical understanding of the SZT2-phenotype and emphasizes the role of this gene in the diagnostic investigation for EOEE and leukoencephalopathies.
Assuntos
Leucoencefalopatias/genética , Mutação , Proteínas do Tecido Nervoso/genética , Espasmos Infantis/genética , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiporters/deficiência , Antiporters/genética , Pré-Escolar , Deficiências do Desenvolvimento/genética , Feminino , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico por imagem , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/etiologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Heterozigoto , Humanos , Lactente , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/etiologia , Imageamento por Ressonância Magnética , Megalencefalia/diagnóstico por imagem , Megalencefalia/genética , Doenças Mitocondriais/diagnóstico por imagem , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/genética , Transtornos Psicomotores/diagnóstico por imagem , Transtornos Psicomotores/etiologia , Transtornos Psicomotores/genética , Espasmos Infantis/diagnóstico por imagem , Espasmos Infantis/etiologiaRESUMO
BACKGROUND: Acyl-CoA binding domain containing protein 5 (ACBD5) is a peroxisomal membrane protein with a cytosolic acyl-CoA binding domain. Because of its acyl-CoA binding domain, ACBD5 has been assumed to function as an intracellular carrier of acyl-CoA esters. In addition, a role for ACBD5 in pexophagy has been suggested. However, the precise role of ACBD5 in peroxisomal metabolism and/or functioning has not yet been established. Previously, a genetic ACBD5 deficiency was identified in three siblings with retinal dystrophy and white matter disease. We identified a pathogenic mutation in ACBD5 in another patient and studied the consequences of the ACBD5 defect in patient material and in ACBD5-deficient HeLa cells to uncover this role. METHODS: We studied a girl who presented with progressive leukodystrophy, syndromic cleft palate, ataxia and retinal dystrophy. We performed biochemical, cell biological and molecular studies in patient material and in ACBD5-deficient HeLa cells generated by CRISPR-Cas9 genome editing. RESULTS: We identified a homozygous deleterious indel mutation in ACBD5, leading to complete loss of ACBD5 protein in the patient. Our studies showed that ACBD5 deficiency leads to accumulation of very long-chain fatty acids (VLCFAs) due to impaired peroxisomal ß-oxidation. No effect on pexophagy was found. CONCLUSIONS: Our investigations strongly suggest that ACBD5 plays an important role in sequestering C26-CoA in the cytosol and thereby facilitates transport into the peroxisome and subsequent ß-oxidation. Accordingly, ACBD5 deficiency is a novel single peroxisomal enzyme deficiency caused by impaired VLCFA metabolism, leading to retinal dystrophy and white matter disease.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Ácidos Graxos/metabolismo , Proteínas de Membrana/deficiência , Peroxissomos/metabolismo , Acil Coenzima A/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Pré-Escolar , DNA Complementar/genética , Feminino , Fibroblastos/metabolismo , Teste de Complementação Genética , Células HeLa , Humanos , Lactente , Imageamento por Ressonância Magnética , Proteínas de Membrana/metabolismo , Pele/patologiaRESUMO
An X-linked condition characterized by the combination of hypomyelinating leukodystrophy and spondylometaphyseal dysplasia (H-SMD) has been observed in only four families, with linkage to Xq25-27, and recent genetic characterization in two families with a common AIFM1 mutation. In our study, 12 patients (6 families) with H-SMD were identified and underwent comprehensive assessment accompanied by whole-exome sequencing (WES). Pedigree analysis in all families was consistent with X-linked recessive inheritance. Presentation typically occurred between 12 and 36 months. In addition to the two disease-defining features of spondylometaphyseal dysplasia and hypomyelination on MRI, common clinical signs and symptoms included motor deterioration, spasticity, tremor, ataxia, dysarthria, cognitive defects, pulmonary hypertension, nystagmus, and vision loss due to retinopathy. The course of the disease was slowly progressive. All patients had maternally inherited or de novo mutations in or near exon 7 of AIFM1, within a region of 70 bp, including synonymous and intronic changes. AIFM1 mutations have previously been associated with neurologic presentations as varied as intellectual disability, hearing loss, neuropathy, and striatal necrosis, while AIFM1 mutations in this small region present with a distinct phenotype implicating bone. Analysis of cell lines derived from four patients identified significant reductions in AIFM1 mRNA and protein levels in osteoblasts. We hypothesize that AIFM1 functions in bone metabolism and myelination and is responsible for the unique phenotype in this condition.
Assuntos
Fator de Indução de Apoptose/genética , Genes Ligados ao Cromossomo X/genética , Predisposição Genética para Doença , Mutação/genética , Humanos , Deficiência Intelectual/genética , Masculino , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Osteocondrodisplasias/genética , Linhagem , Fenótipo , Análise de Sequência de DNARESUMO
Leukodystrophies are a broad class of genetic disorders that result in disruption or destruction of central myelination. Although the mechanisms underlying these disorders are heterogeneous, there are many common symptoms that affect patients irrespective of the genetic diagnosis. The comfort and quality of life of these children is a primary goal that can complement efforts directed at curative therapies. Contained within this report is a systems-based approach to management of complications that result from leukodystrophies. We discuss the initial evaluation, identification of common medical issues, and management options to establish a comprehensive, standardized care approach. We will also address clinical topics relevant to select leukodystrophies, such as gallbladder pathology and adrenal insufficiency. The recommendations within this review rely on existing studies and consensus opinions and underscore the need for future research on evidence-based outcomes to better treat the manifestations of this unique set of genetic disorders.
Assuntos
Doenças Desmielinizantes/terapia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/terapia , Leucoencefalopatias/terapia , Doenças por Armazenamento dos Lisossomos/prevenção & controle , Doenças por Armazenamento dos Lisossomos/terapia , Insuficiência Adrenal/terapia , Adulto , Criança , Doenças Desmielinizantes/congênito , Feminino , Vesícula Biliar/patologia , Predisposição Genética para Doença , Humanos , Leucoencefalopatias/congênito , Masculino , Qualidade de VidaRESUMO
Here we report whole exome sequencing (WES) on a cohort of 71 patients with persistently unresolved white matter abnormalities with a suspected diagnosis of leukodystrophy or genetic leukoencephalopathy. WES analyses were performed on trio, or greater, family groups. Diagnostic pathogenic variants were identified in 35% (25 of 71) of patients. Potentially pathogenic variants were identified in clinically relevant genes in a further 7% (5 of 71) of cases, giving a total yield of clinical diagnoses in 42% of individuals. These findings provide evidence that WES can substantially decrease the number of unresolved white matter cases. Ann Neurol 2016;79:1031-1037.
Assuntos
Análise Mutacional de DNA , Exoma/genética , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/genética , Substância Branca/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Leucoencefalopatias/patologia , Masculino , Mutação , Adulto JovemRESUMO
PURPOSE: This study examines the analytic validity of a software tool designed to provide individuals with risk assessments for colorectal cancer based on personal health and family history information. The software is compatible with the US Surgeon General's My Family Health Portrait (MFHP). METHODS: An algorithm for risk assessment was created using accepted colorectal risk assessment guidelines and programmed into a software tool (MFHP). Risk assessments derived from 150 pedigrees using the MFHP tool were compared with "gold standard" risk assessments developed by three expert cancer genetic counselors. RESULTS: Genetic counselor risk assessments showed substantial, but not perfect, agreement. MFHP risk assessments for colorectal cancer yielded a sensitivity for colorectal cancer risk of 81% (95% confidence interval: 54-96%) and specificity of 90% (95% confidence interval: 83-94%), as compared with genetic counselor pedigree review. The positive predictive value for risk for MFHP was 48% (95% confidence interval: 29-68%), whereas the negative predictive value was 98% (95% confidence interval: 93-99%). Agreement between MFHP and genetic counselor pedigree review was moderate (κ = 0.54). CONCLUSION: The analytic validity of the MFHP colorectal cancer risk assessment software is similar to those of other types of screening tools used in primary care. Future investigations should explore the clinical validity and utility of the software in diverse population groups.Genet Med 17 9, 753-756.
Assuntos
Neoplasias Colorretais/genética , Anamnese/métodos , Medição de Risco/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Neoplasias Colorretais/diagnóstico , Saúde da Família , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Anamnese/normas , Pessoa de Meia-Idade , Linhagem , Medição de Risco/normas , Software , Estados UnidosRESUMO
Leukodystrophies are inherited disorders whose primary pathophysiology consists of abnormal deposition or progressive disruption of brain myelin. Leukodystrophy patients manifest many of the same symptoms and medical complications despite the wide spectrum of genetic origins. Although no definitive cures exist, all of these conditions are treatable. This report provides the first expert consensus on the recognition and treatment of medical and psychosocial complications associated with leukodystrophies. We include a discussion of serious and potentially preventable medical complications and propose several preventive care strategies. We also outline the need for future research to prioritize clinical needs and subsequently develop, validate, and optimize specific care strategies.
Assuntos
Doenças Desmielinizantes , Leucoencefalopatias , Doenças Desmielinizantes/diagnóstico , Doenças Desmielinizantes/terapia , Gerenciamento Clínico , Humanos , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/terapia , Bainha de Mielina/fisiologiaRESUMO
Leukodystrophies (LD) and genetic leukoencephalopathies (gLE) are disorders that result in white matter abnormalities in the central nervous system (CNS). Magnetic resonance (MR) imaging (MRI) has dramatically improved and systematized the diagnosis of LDs and gLEs, and in combination with specific clinical features, such as Addison's disease in Adrenoleukodystrophy or hypodontia in Pol-III related or 4H leukodystrophy, can often resolve a case with a minimum of testing. The diagnostic odyssey for the majority LD and gLE patients, however, remains extensive--many patients will wait nearly a decade for a definitive diagnosis and at least half will remain unresolved. The combination of MRI, careful clinical evaluation and next generation genetic sequencing holds promise for both expediting the diagnostic process and dramatically reducing the number of unresolved cases. Here we present a workflow detailing the Global Leukodystrophy Initiative (GLIA) consensus recommendations for an approach to clinical diagnosis, including salient clinical features suggesting a specific diagnosis, neuroimaging features and molecular genetic testing. We also discuss recommendations on the use of broad-spectrum next-generation sequencing in instances of ambiguous MRI or clinical findings. We conclude with a proposal for systematic trials of genome-wide agnostic testing as a first line diagnostic in LDs and gLEs given the increasing number of genes associated with these disorders.
Assuntos
Doenças Desmielinizantes/diagnóstico , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico , Doenças por Armazenamento dos Lisossomos/diagnóstico , Adrenoleucodistrofia/diagnóstico , Anodontia/diagnóstico , Humanos , Imageamento por Ressonância MagnéticaRESUMO
Leukodystrophies are a heterogeneous, often progressive group of disorders manifesting a wide range of symptoms and complications. Most of these disorders have historically had no etiologic or disease specific therapeutic approaches. Recently, a greater understanding of the pathologic mechanisms associated with leukodystrophies has allowed clinicians and researchers to prioritize treatment strategies and advance research in therapies for specific disorders, some of which are on the verge of pilot or Phase I/II clinical trials. This shifts the care of leukodystrophy patients from the management of the complex array of symptoms and sequelae alone to targeted therapeutics. The unmet needs of leukodystrophy patients still remain an overwhelming burden. While the overwhelming consensus is that these disorders collectively are symptomatically treatable, leukodystrophy patients are in need of advanced therapies and if possible, a cure.
Assuntos
Doenças Desmielinizantes/terapia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/terapia , Leucodistrofia Metacromática/terapia , Leucoencefalopatias/terapia , Encefalopatias/prevenção & controle , Encefalopatias/terapia , Doenças Desmielinizantes/prevenção & controle , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/prevenção & controle , Humanos , Leucodistrofia Metacromática/prevenção & controle , Leucoencefalopatias/prevenção & controleRESUMO
Aicardi-Goutières syndrome is an inflammatory disease occurring due to mutations in any of TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR or IFIH1. We report on 374 patients from 299 families with mutations in these seven genes. Most patients conformed to one of two fairly stereotyped clinical profiles; either exhibiting an in utero disease-onset (74 patients; 22.8% of all patients where data were available), or a post-natal presentation, usually within the first year of life (223 patients; 68.6%), characterized by a sub-acute encephalopathy and a loss of previously acquired skills. Other clinically distinct phenotypes were also observed; particularly, bilateral striatal necrosis (13 patients; 3.6%) and non-syndromic spastic paraparesis (12 patients; 3.4%). We recorded 69 deaths (19.3% of patients with follow-up data). Of 285 patients for whom data were available, 210 (73.7%) were profoundly disabled, with no useful motor, speech and intellectual function. Chilblains, glaucoma, hypothyroidism, cardiomyopathy, intracerebral vasculitis, peripheral neuropathy, bowel inflammation and systemic lupus erythematosus were seen frequently enough to be confirmed as real associations with the Aicardi-Goutieres syndrome phenotype. We observed a robust relationship between mutations in all seven genes with increased type I interferon activity in cerebrospinal fluid and serum, and the increased expression of interferon-stimulated gene transcripts in peripheral blood. We recorded a positive correlation between the level of cerebrospinal fluid interferon activity assayed within one year of disease presentation and the degree of subsequent disability. Interferon-stimulated gene transcripts remained high in most patients, indicating an ongoing disease process. On the basis of substantial morbidity and mortality, our data highlight the urgent need to define coherent treatment strategies for the phenotypes associated with mutations in the Aicardi-Goutières syndrome-related genes. Our findings also make it clear that a window of therapeutic opportunity exists relevant to the majority of affected patients and indicate that the assessment of type I interferon activity might serve as a useful biomarker in future clinical trials.