Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Qual ; 47(1): 96-105, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29415113

RESUMO

Phosphorus (P) mobilization in agricultural landscapes is regulated by both hydrologic (transport) and biogeochemical (supply) processes interacting within soils; however, the dominance of these controls can vary spatially and temporally. In this study, we analyzed a 5-yr dataset of stormflow events across nine agricultural fields in the lower Great Lakes region of Ontario, Canada, to determine if edge-of-field surface runoff and tile drainage losses (total and dissolved reactive P) were limited by transport mechanisms or P supply. Field sites ranged from clay loam, silt loam, to sandy loam textures. Findings indicate that biogeochemical processes (P supply) were more important for tile drain P loading patterns (i.e., variable flow-weighted mean concentrations ([]) across a range of flow regimes) relative to surface runoff, which trended toward a more chemostatic or transport-limited response. At two sites with the same soil texture, higher tile [] and greater transport limitations were apparent at the site with higher soil available P (STP); however, STP did not significantly correlate with tile [] or P loading patterns across the nine sites. This may reflect that the fields were all within a narrow STP range and were not elevated in STP concentrations (Olsen-P, ≤25 mg kg). For the study sites where STP was maintained at reasonable concentrations, hydrology was less of a driving factor for tile P loadings, and thus management strategies that limit P supply may be an effective way to reduce P losses from fields (e.g., timing of fertilizer application).


Assuntos
Fósforo , Movimentos da Água , Agricultura , Canadá , Great Lakes Region , Solo
2.
Appl Environ Microbiol ; 78(12): 4367-72, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22467502

RESUMO

Clinically important antibiotic resistance genes were detected in culturable bacteria and class 1 integron gene cassettes recovered from suspended floc, a significant aquatic repository for microorganisms and trace elements, across freshwater systems variably impacted by anthropogenic activities. Antibiotic resistance gene cassettes in floc total community DNA differed appreciably in number and type from genes detected in bacteria cultured from floc. The number of floc antibiotic resistance gene cassette types detected across sites was positively correlated with total (the sum of Ag, As, Cu, and Pb) trace element concentrations in aqueous solution and in a component of floc readily accessible to bacteria. In particular, concentrations of Cu and Pb in the floc component were positively correlated with floc resistance gene cassette diversity. Collectively, these results identify suspended floc as an important reservoir, distinct from bulk water and bed sediment, for antibiotic resistance in aquatic environments ranging from heavily impacted urban sites to remote areas of nature reserves and indicate that trace elements, particularly Cu and Pb, are geochemical markers of resistance diversity in this environmental reservoir. The increase in contamination of global water supplies suggests that aquatic environments will become an even more important reservoir of clinically important antibiotic resistance in the future.


Assuntos
Bactérias/genética , Farmacorresistência Bacteriana , Água Doce/química , Água Doce/microbiologia , Integrons , Metagenoma , Metais Pesados/análise , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 46(1): 209-16, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22091893

RESUMO

Significantly higher concentrations of Ag, As, Cu, Ni and Co are found in floc compared to bed sediments across six variably impacted aquatic ecosystems. In contrast to the observed element and site-specific bed sediment trace element (TE) partitioning patterns, floc TE sequestration is consistently dominated by amorphous oxyhydroxides (FeOOH), which account for 30-79% of floc total TE concentrations, irrespective of system physico-chemistry or elements involved. FeOOH consistently occur in significantly higher concentrations in floc than within bed sediments. Further, comparative concentration factors indicate significantly higher TE reactivity of floc-FeOOH relative to sediment-FeOOH in all systems investigated, indicating that both the greater abundance and higher reactivity of floc-FeOOH contribute to enhanced floc TE uptake. Results indicate that floc-organics (live cells and exopolymeric substances, EPS) directly predict floc-FeOOH concentrations, suggesting an organic structural role in the collection/templating of FeOOH. This, in turn, facilitates the sequestration of TEs associated with floc-FeOOH formation, imparting the conserved FeOOH "signature" on floc TE geochemistry across sites. Results demonstrate that the organic rich nature of floc exerts an important control over TE geochemistry in aquatic environments, ultimately creating a distinct solid with differing controls over TE behavior than bed sediments in close proximity (<0.5 m).


Assuntos
Ecossistema , Sedimentos Geológicos/química , Oligoelementos/análise , Poluição da Água/análise , Canadá , Carbono/análise , Floculação , Hidróxidos/química , Compostos Orgânicos/análise
4.
J Environ Qual ; 51(5): 811-825, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35980320

RESUMO

Although many studies have examined how improvements in wastewater treatment impact river nutrient concentrations and loads, there has been much less focus on measuring river metabolism to evaluate the wider aquatic ecosystem benefits of reducing nutrient inputs to rivers. The objectives of this study were to evaluate the effects of enhanced wastewater treatment (nitrification) on river metabolism in the Grand River, Canada's largest river draining into Lake Erie. Metabolic fingerprints and regimes (calculated from high-frequency dissolved oxygen [DO] measurements) were used to visualize whole-river ecosystem functional responses to these wastewater treatment upgrades. There was a 60% reduction in ecosystem respiration during summer, in response to reductions in effluent total ammonia inputs, causing a shift from net heterotrophy to net autotrophy, and contraction of river metabolic fingerprints. This resulted in major improvements in summer DO concentrations, with reductions in the percentage of days during summer that DO minima fell below water-quality guidelines for protection of aquatic early life stages, from 88% to ≤16%. The results also point to potential cascading impacts on coupled phosphorus and nitrogen cycles, which may generate further improvements in river water quality. During the summer, high rates of river metabolism and nutrient retention may result in measured water-column nutrient concentrations potentially underestimating nutrient pressures. This study also demonstrates the value of combining river metabolism with nutrient monitoring for a more holistic understanding of the role of nutrients in river ecosystem health and function.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Amônia , Ecossistema , Monitoramento Ambiental/métodos , Nitrogênio/análise , Oxigênio , Fósforo/análise , Rios , Poluentes Químicos da Água/análise
5.
J Environ Qual ; 51(4): 731-744, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35580837

RESUMO

Delineating the relative solubility of soil phosphorus (P) in agricultural landscapes is essential to predicting potential P mobilization in the landscape and can improve nutrient management strategies. This study describes spatial patterns of soil extractable P (easily, moderately, and poorly soluble P) in agricultural landscapes of the Red River basin and the southern Great Lakes region. Surface soils (0-30 cm) and select deeper cores (0-90 cm) were collected from 10 cropped fields ranging in terrain (near-level to hummocky), soil texture (clay to loam), composition (calcareous to noncalcareous), and climate across these differing glacial landscapes. Poorly soluble P dominated (up to 91%) total extractable P in the surface soils at eight sites. No differences in the relative solubilities of soil extractable P with microtopography were apparent in landscapes without defined surface depressions. In contrast, in landscapes with pronounced surface depressions, increased easily soluble P (Sol-P), and decreased soil P sorption capacity were found in soil in wetter, low-slope zones relative to drier upslope locations. The Sol-P pool was most important to soil P retention (up to 28%) within the surface depressions of the Red River basin and at sites with low-carbonate soils in the southern Lake Erie watershed (up to 28%), representing areas at elevated risk of soil P remobilization. This study demonstrates interrelationships among soil extractable P pools, soil development, and soil moisture regimes in agricultural glacial landscapes and provides insight into identifying potential areas for soil P remobilization and associated P availability to crops and runoff.


Assuntos
Fósforo , Solo , Agricultura , Produtos Agrícolas , Lagos
6.
Environ Sci Technol ; 45(6): 2157-64, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21322631

RESUMO

Significantly higher concentrations of Ag, As, Cu, Co, Ni, and Pb are found in suspended floc compared to surficial bed sediments for a freshwater beach in Lake Ontario. Contrasting observed element-specific bed sediment metal partitioning patterns, floc sequestration for all elements is dominated by one substrate: amorphous oxyhydroxides. More specifically, floc metal scavenging is controlled by floc biogeochemical architecture. Floc organics, largely living microbial cells and associated exopolymeric substances (EPS), act as scaffolds for the collection and/or templating of amorphous Fe oxyhydroxides. While interactions between floc organics and amorphous Fe oxyhydroxides affected floc sorption behavior, specific element affinities and competition for these limited substrates was important for overall floc partitioning. Further, assessment of metal dynamics during stormy conditions indicated energy-regime driven shifts in floc and bed sediment partitioning that were specifically linked to the exchange of floc and bed sedimentary materials. These novel results demonstrate that the microbial nature of floc formation exerts an important control on floc metal dynamics distinguishable from surficial bed sediments and that hydrologic energy-regime is an important factor to consider in overall floc metal behavior, especially in beach environments.


Assuntos
Água Doce/química , Metais/análise , Poluentes Químicos da Água/análise , Adsorção , Canadá , Ecossistema , Monitoramento Ambiental , Floculação , Água Doce/microbiologia , Sedimentos Geológicos/química , Metais/química , Poluentes Químicos da Água/química
7.
Ambio ; 38(4): 194-200, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19739553

RESUMO

The Canadian horticultural peat industry generates carbon emissions through various methods of peat extraction, processing, and land-use changes. This study provides a carbon emissions analysis comparing the traditional vacuum harvest (VH) and block-cut (BC) extraction techniques to a new acrotelm transplant (AT) method that restores natural peatland function by preserving and replacing the surface layer vegetation as part of the extraction process. The relative global warming potential for each extraction method was determined by estimating carbon dioxide (CO2) and methane exchange for each phase of peat extraction, including emissions from land-use change and machinery fuel consumption. Preliminary findings, based on 1 y of measurements, indicate that the AT technique has the lowest annual carbon emissions compared to the VH and BC methods. Projected total carbon emissions from a 75-ha peatland after 50 y of extraction using the AT technique produced a sink of approximately 3300 t CO2 equivalents (CO2-e). This represents a marked reduction in total carbon emissions estimated for the VH (19 000 t CO2-e) and BC (29 000 t CO2-e) extraction techniques. This analysis suggests that the AT method reestablishes peat accumulation and peatland carbon storage function more effectively than the VH and BC methods, which are associated with delayed restoration efforts. Consequently, the AT technique has the potential to greatly reduce the carbon footprint of the Canadian horticultural peat industry.


Assuntos
Agricultura , Poluição do Ar , Dióxido de Carbono , Aquecimento Global , Solo , Canadá , Dióxido de Carbono/metabolismo , Monitoramento Ambiental , Humanos , Metano/metabolismo
8.
J Environ Qual ; 48(4): 813-821, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31589700

RESUMO

Agricultural P losses are a global economic and water quality concern. Much of the current understanding of P dynamics in agricultural systems has been obtained from rainfall-driven runoff, and less is known about cold-season processes. An improved understanding of the magnitude, form, and transport flow paths of P losses from agricultural croplands year round, and the climatic drivers of these processes, is needed to prioritize and evaluate appropriate best management practices (BMPs) to protect soil-water quality in cold regions. This study examines multiyear, year-round, high-frequency edge-of-field P losses (soluble reactive P and total P [TP]) in overland flow and tile drainage from three croplands in southern Ontario, Canada. Annual and seasonal budgets for water, P, and estimates of field P budgets (including fertilizer inputs, crop uptake, and runoff) were calculated for each site. Annual edge-of-field TP loads ranged from 0.18 to 1.93 kg ha yr (mean = 0.59 kg ha yr) across the region, including years with fertilizer application. Tile drainage dominated runoff across sites, whereas the contribution of tiles and overland flow to P loss differed regionally, likely related to site-specific topography, soil type, and microclimate. The nongrowing season was the dominant period for runoff and P loss across sites, where TP loss during this period was often associated with overland flow during snowmelt. These results indicate that emphasis should be placed on BMPs that are effective during both the growing and nongrowing season in cold regions, but that the suitability of various BMPs may vary for different sites.


Assuntos
Fósforo , Movimentos da Água , Agricultura , Ontário , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA