Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 134(2): 219-232, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38650442

RESUMO

BACKGROUND AND AIMS: Turions are vegetative, dormant overwintering organs formed in aquatic plants in response to unfavourable ecological conditions. Contents of cytokinin (CK), auxin metabolites and abscisic acid (ABA) as main growth and development regulators were compared in innately dormant autumnal turions of 22 aquatic plant species of different functional ecological or taxonomic groups with those in non-dormant winter apices in three aquatic species and with those in spring turions of four species after their overwintering. METHODS: The hormones were analysed in miniature turion samples using ultraperformance liquid chromatography coupled with triple quadrupole mass spectrometry. KEY RESULTS: In innately dormant turions, the total contents of each of the four main CK types, biologically active forms and total CKs differed by two to three orders of magnitude across 22 species; the proportion of active CK forms was 0.18-67 %. Similarly, the content of four auxin forms was extremely variable and the IAA proportion as the active form was 0.014-99 %. The ABA content varied from almost zero to 54 µmol kg-1 dry weight and after overwintering it usually significantly decreased. Of all functional traits studied, hormone profiles depended most on the place of turion sprouting (surface vs bottom) and we suggest that this trait is crucial for turion ecophysiology. CONCLUSIONS: The key role of ABA in regulating turion dormancy was confirmed. However, the highly variable pattern of the ABA content in innately dormant and in overwintered turions indicates that the hormonal mechanism regulating the innate dormancy and its breaking in turions is not uniform within aquatic plants.


Assuntos
Citocininas , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/análise , Dormência de Plantas/fisiologia
2.
Plant Direct ; 8(1): e558, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222932

RESUMO

Turions are vegetative, dormant, and storage overwintering organs formed in perennial aquatic plants in response to unfavorable ecological conditions and originate by extreme condensation of apical shoot segments. The contents of cytokinins, auxins, and abscisic acid were estimated in shoot apices of summer growing, rootless aquatic carnivorous plants, Aldrovanda vesiculosa and Utricularia australis, and in developing turions at three stages and full maturity to reveal hormonal patterns responsible for turion development. The hormones were analyzed in miniature turion samples using ultraperformance liquid chromatography coupled with triple quadrupole mass spectrometry. Photosynthetic measurements in young leaves also confirmed relatively high photosynthetic rates at later turion stages. The content of active cytokinin forms was almost stable in A. vesiculosa during turion development but markedly decreased in U. australis. In both species, auxin content culminated in the middle of turion development and then decreased again. The content of abscisic acid as the main inhibitory hormone was very low in growing plants in both species but rose greatly at first developmental stages and stayed very high in mature turions. The hormonal data indicate a great strength of developing turions within sink-source relationships and confirm the central role of abscisic acid in regulating the turion development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA