Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 13(29): 19789-19802, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37404322

RESUMO

This study focused on synthesizing ginger-stabilized silver nanoparticles (Gin-AgNPs) using a more eco-friendly method that utilized AgNO3 and natural ginger solution. These nanoparticles underwent a color change from yellow to colorless when exposed to Hg2+, enabling the detection of Hg2+ in tap water. The colorimetric sensor had good sensitivity, with a limit of detection (LOD) of 1.46 µM and a limit of quantitation (LOQ) of 3.04 µM. Importantly, the sensor operated accurately without being affected by various other metal ions. To enhance its performance, a machine learning approach was employed and achieved accuracy ranging from 0% to 14.66% when trained with images of Gin-AgNP solutions containing different Hg2+ concentrations. Furthermore, the Gin-AgNPs and Gin-AgNPs hydrogels exhibited antibacterial effects against both Gram-negative and Gram-positive bacteria, indicating potential future applications in the detection of Hg2+ and in wound healing.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572431

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are applied in various applications in catalysis, biosensing, imaging, and as antibacterial agents. Here we to prepare ZnO nanomaterials decorated by γ-amino butyric acid (GABA), curcumin derivatives (CurBF2) and silver nanoparticles (CurBF2-AgNPs). The structures of all ZnO nanostructures were characterized using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), UV-VIS spectrophotometry, fluorescence spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HR-TEM). Further, their antibacterial activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria were investigated through analysis of minimum inhibitory concentration (MIC) method. Among the prepared nanostructures, the ZnO NPs-GABA/CurBF2-AgNPs showed excellent antibacterial activity against both Gram-positive and -negative bacteria. ZnO NPs fabricated here may have potential use in future anti-bacterial compositions and coatings technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA