Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arthritis Rheum ; 63(1): 159-67, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20936634

RESUMO

OBJECTIVE: Mutations in human cartilage oligomeric matrix protein (COMP) cause multiple epiphyseal dysplasia or pseudoachondroplasia. Electron microscopic analyses of patient biopsy tissue have shown that, in most cases, mutated COMP is retained in granular or lamellar inclusions in the endoplasmic reticulum of chondrocytes. However, some mutations that do not interfere with protein trafficking, resulting in normal secretion of the mutated protein, have been identified. These mutations are likely to cause the chondrodysplasia phenotype, via events that occur after secretion. The aim of the present study was to identify such extracellular mechanisms associated with the pathogenesis of chondrodysplasias. METHODS: A mutated but secreted COMP variant, p.H587R, as well as wild-type COMP were recombinantly expressed and purified from cell culture supernatants. Since recent studies have shown that COMP can facilitate collagen fibrillogenesis in vitro, the effect of the p.H587R mutation on this process was determined by analyzing the kinetics of fibrillogenesis in vitro and determining the structure of the collagen fibrils formed by immunogold electron microscopy. RESULTS: Mutated p.H587R COMP accelerated fibril formation by type I collagen in vitro to a slightly greater extent than that with wild-type COMP. However, p.H587R COMP induced aggregation and disorganization of fibril intermediates and end products. Mixtures of cartilage collagens or of type XI collagen alone produced similar results. The addition of p.H587R COMP to preformed fibrils induced aggregation and fusion of the fibrils, whereas wild-type COMP had little effect. CONCLUSION: The mutant COMP variant p.H587R generally interferes with normal collagen organization during fibrillogenesis. This constitutes a novel pathogenetic mechanism of COMP-associated chondrodysplasias.


Assuntos
Colágeno/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Acondroplasia/genética , Acondroplasia/metabolismo , Proteína de Matriz Oligomérica de Cartilagem , Células Cultivadas , Colágeno/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Proteínas Matrilinas , Microscopia Eletrônica , Mutação
2.
Plant Physiol ; 148(3): 1583-602, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18805951

RESUMO

Leaf hairs (trichomes) of Arabidopsis (Arabidopsis thaliana) have been extensively used as a model to address general questions in cell and developmental biology. Here, we lay the foundation for a systems-level understanding of the biology of this model cell type by performing genome-wide gene expression analyses. We have identified 3,231 genes that are up-regulated in mature trichomes relative to leaves without trichomes, and we compared wild-type trichomes with two mutants, glabra3 and triptychon, that affect trichome morphology and physiology in contrasting ways. We found that cell wall-related transcripts were particularly overrepresented in trichomes, consistent with their highly elaborated structure. In addition, trichome expression maps revealed high activities of anthocyanin, flavonoid, and glucosinolate pathways, indicative of the roles of trichomes in the biosynthesis of secondary compounds and defense. Interspecies comparisons revealed that Arabidopsis trichomes share many expressed genes with cotton (Gossypium hirsutum) fibers, making them an attractive model to study industrially important fibers. In addition to identifying physiological processes involved in the development of a specific cell type, we also demonstrated the utility of transcript profiling for identifying and analyzing regulatory gene function. One of the genes that are differentially expressed in fibers is the MYB transcription factor GhMYB25. A combination of transcript profiling and map-based cloning revealed that the NOECK gene of Arabidopsis encodes AtMYB106, a MIXTA-like transcription factor and homolog of cotton GhMYB25. However, in contrast to Antirrhinum, in which MIXTA promotes epidermal cell outgrowth, AtMYB106 appears to function as a repressor of cell outgrowth in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Transcrição Gênica , RNA Mensageiro/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA