Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 552(7684): 219-224, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29211717

RESUMO

Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking 'adaptor' protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin-ECM bonds-the molecular clutches-respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.


Assuntos
Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Adesões Focais , Integrinas/metabolismo , Ligantes , Modelos Biológicos , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Membrana Celular/química , Matriz Extracelular/química , Regulação da Expressão Gênica , Humanos , Camundongos , Miosinas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Maleabilidade , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Sinalização YAP
2.
Nano Lett ; 20(3): 1571-1577, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32083879

RESUMO

Molecular motor proteins form the basis of cellular dynamics. Recently, notable efforts have led to the creation of their DNA-based mimics, which can carry out complex nanoscale motion. However, such functional analogues have not yet been integrated or operated inside synthetic cells toward the goal of realizing artificial biological systems entirely from the bottom-up. In this Letter, we encapsulate and actuate DNA-assembled dynamic nanostructures inside cell-sized microfluidic compartments. These encapsulated DNA nanostructures not only exhibit structural reconfigurability owing to their pH-sensitive molecular switches upon external stimuli but also possess optical feedback enabled by the integrated plasmonic probes. In particular, we demonstrate the power of microfluidic compartmentalization for achieving on-chip plasmonic enantiomer separation and substrate filtration. Our work exemplifies that the two unique tools, droplet-based microfluidics and DNA technology, offering high precision on the microscale and nanoscale, respectively, can be brought together to greatly enrich the complexity and diversity of functional synthetic systems.


Assuntos
DNA/química , Ouro/química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Nanoestruturas/química
3.
Small ; 16(27): e1906424, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32078238

RESUMO

Bottom-up synthetic biology has directed most efforts toward the construction of artificial compartmentalized systems that recreate living cell functions in their mechanical, morphological, or metabolic characteristics. However, bottom-up synthetic biology also offers great potential to study subcellular structures like organelles. Because of their intricate and complex structure, these key elements of eukaryotic life forms remain poorly understood. Here, the controlled assembly of lipid enclosed, organelle-like architectures is explored by droplet-based microfluidics. Three types of giant unilamellar vesicles (GUVs)-based synthetic organelles (SOs) functioning within natural living cells are procedured: (A) synthetic peroxisomes supporting cellular stress-management, mimicking an organelle innate to the host cell by using analogous enzymatic modules; (B) synthetic endoplasmic reticulum (ER) as intracellular light-responsive calcium stores involved in intercellular calcium signalling, mimicking an organelle innate to the host cell but utilizing a fundamentally different mechanism; and (C) synthetic magnetosomes providing eukaryotic cells with a magnetotactic sense, mimicking an organelle that is not natural to the host cell but transplanting its functionality from other branches of the phylogenetic tree. Microfluidic assembly of functional SOs paves the way for high-throughput generation of versatile intracellular structures implantable into living cells. This in-droplet SO design may support or expand cellular functionalities in translational nanomedicine.


Assuntos
Células Artificiais , Microfluídica , Organelas , Biologia Sintética , Células Artificiais/metabolismo , Organelas/química , Filogenia , Biologia Sintética/métodos , Lipossomas Unilamelares
4.
Nat Mater ; 17(1): 89-96, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035355

RESUMO

Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed 'droplet-stabilized giant unilamellar vesicles (dsGUVs)'. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.

5.
Soft Matter ; 14(6): 901-909, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29364311

RESUMO

Microtubules and motor proteins form active filament networks that are critical for a variety of functions in living cells. Network topology and dynamics are the result of a self-organisation process that takes place within the boundaries of the cell. Previous biochemical in vitro studies with biomimetic systems consisting of purified motors and microtubules have demonstrated that confinement has an important effect on the outcome of the self-organisation process. However, the pathway of motor/microtubule self-organisation under confinement and its effects on network morphology are still poorly understood. Here, we have investigated how minus-end directed microtubule cross-linking kinesins organise microtubules inside polymer-stabilised microfluidic droplets of well-controlled size. We find that confinement can impose a novel pathway of microtubule aster formation proceeding via the constriction of an initially spherical motor/microtubule network. This mechanism illustrates the close relationship between confinement, network contraction, and aster formation. The spherical constriction pathway robustly produces single, well-centred asters with remarkable reproducibility across thousands of droplets. These results show that the additional constraint of well-defined confinement can improve the robustness of active network self-organisation, providing insight into the design principles of self-organising active networks in micro-scale confinement.

6.
Biophys J ; 113(11): 2508-2518, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29212004

RESUMO

Cells rely on focal adhesions (FAs) to carry out a variety of important tasks, including motion, environmental sensing, and adhesion to the extracellular matrix. Although attaining a fundamental characterization of FAs is a compelling goal, their extensive complexity and small size, which can be below the diffraction limit, have hindered a full understanding. In this study we have used single-molecule localization microscopy (SMLM) to investigate integrin ß3 and paxillin in rat embryonic fibroblasts growing on two different extracellular matrix-representing substrates (i.e., fibronectin-coated substrates and specifically biofunctionalized nanopatterned substrates). To quantify the substructure of FAs, we developed a clustering method based on expectation maximization of a Gaussian mixture that accounts for localization uncertainty and background. Analysis of our SMLM data indicates that the structures within FAs, characterized as a Gaussian mixture, typically have areas between 0.01 and 1 µm2, contain 10-100 localizations, and can exhibit substantial eccentricity. Our approach based on SMLM opens new avenues for studying structural and functional biology of molecular assemblies that display substantial varieties in size, shape, and density.


Assuntos
Adesões Focais/metabolismo , Microscopia , Animais , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Integrina beta3/metabolismo , Modelos Biológicos , Paxilina/metabolismo , Ratos
7.
Anal Chem ; 89(21): 11672-11678, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28985462

RESUMO

Fluorescence correlation spectroscopy (FCS) is a sensitive technique commonly applied for studying the dynamics of nanoscale-labeled objects in solution. Current analysis of FCS data is largely based on the assumption that the labeled objects are stochastically displaced due to Brownian motion. However, this assumption is often invalid for microscale objects, since the motion of these objects is dominated by Stokes drag and settling or rising effects, rather than stochastic Brownian motion. To utilize the power of FCS for systems with nonstochastic displacements of objects, the collection and analysis of FCS data have to be reconceptualized. Here, we extended the applicability of FCS for the detection and analysis of periodically passing objects. Toward this end, we implemented droplet-based microfluidics, in which monodispersed droplets containing fluorescent marker are flowing equally spaced within microchannels. We show by simulations and experiments that FCS can sensitively quantify the flow-rates, variability, and content of rapidly passing droplets. This information can be derived at high temporal resolution, based on the intensity fluctuations generated by only 5-10 passing droplets. Moreover, by utilizing the periodicity of the flowing droplets for noise reduction by averaging, FCS can monitor accurately the droplets flow even if their fluorescence intensity is negligible. Hence, extending FCS for periodically passing objects converts it into a powerful analytical tool for high-throughput droplet-based microfluidics. Moreover, based on the principles described here, FCS can be straightforwardly applied for a variety of systems in which the passing of objects is periodic rather than stochastic.

8.
Anal Chem ; 87(4): 2063-7, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25607822

RESUMO

Water-in-oil emulsion droplets created in droplet-based microfluidic devices have been tested and used recently as well-defined picoliter-sized 3D compartments for various biochemical and biomedical applications. In many of these applications, fluorescence measurements are applied to reveal the protein content, spatial distribution, and dynamics in the droplets. However, emulsion droplets do not always provide entirely sealed compartments, and partitioning of dyes or labeled molecules to the oil phase is frequently observed. Therefore, stable molecular retention in the droplets represents a challenge, and many physical and chemical key factors of microfluidic system components have to be considered. In this study, we investigated the retention of 12 commonly used water-soluble dyes in droplets having six different aqueous phase conditions. We demonstrate that the physicochemical properties of the dyes have a major influence on the retention level. In particular, hydrophilicity has a strong influence on retention, with highly hydrophilic dyes (LogD < -7) showing stable, buffer/medium independent retention. In the case of less hydrophilic dyes, we showed that retention can be improved by adjusting the surfactants physical properties, such as geometry, length, and concentration. Furthermore, we analyzed the retention stability of labeled biomolecules such as antibodies, streptavidin, and tubulin proteins and showed that stable retention can be strongly dependent on dye and surfactants selection.


Assuntos
Emulsões/química , Corantes Fluorescentes/química , Técnicas Analíticas Microfluídicas , Água/química , Interações Hidrofóbicas e Hidrofílicas
9.
J Autoimmun ; 54: 100-11, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24951031

RESUMO

In this article, we discuss novel synthetic approaches for studying the interactions of cells with their microenvironment. Notably, critical cellular processes such as growth, differentiation, migration, and fate determination, are tightly regulated by interactions with neighboring cells, and the surrounding extracellular matrix. Given the huge complexity of natural cellular environments, and their rich molecular and physical diversity, the mission of understanding "environmental signaling" at a molecular-mechanistic level appears to be extremely challenging. To meet these challenges, attempts have been made in recent years to design synthetic matrices with defined chemical and physical properties, which, artificial though they may be, could reveal basic "design principles" underlying the physiological processes. Here, we summarize recent developments in the characterization of the chemical and physical properties of cell sensing and adhesion, as well as the design and use of engineered, micro- to nanoscale patterned and confined environments, for systematic, comprehensive modulation of the cells' environment. The power of these biomimetic surfaces to highlight environmental signaling events in cells, and in immune cells in particular, will be discussed.


Assuntos
Materiais Biomiméticos , Biomimética , Microambiente Celular/imunologia , Transdução de Sinais/imunologia , Engenharia Tecidual , Animais , Adesão Celular/imunologia , Humanos
10.
ACS Synth Biol ; 13(3): 781-791, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423534

RESUMO

In order to recapitulate complex eukaryotic compartmentalization, synthetic biology aims to recreate cellular membrane-lined compartments from the bottom-up. Many important cellular organelles and cell-produced extracellular vesicles are in the size range of several hundreds of nanometers. Although attaining a fundamental characterization and mimicry of their cellular functions is a compelling goal, the lack of methods for controlled vesicle formation in this size range has hindered full understanding. Here, we show the optimization of a simple and efficient protocol for the production of large unilamellar vesicles (LUVs) with a median diameter in the range of 450-550 nm with high purity. Importantly, we rely on commercial reagents and common laboratory equipment. We thoroughly characterize the influence of different experimental parameters on the concentration and size of the resulting vesicles and assess changes in their lipid composition and surface charge. We provide guidance for researchers to optimize LUV production further to suit specific applications.


Assuntos
Lipossomos , Lipossomas Unilamelares
11.
Adv Healthc Mater ; 13(9): e2303351, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38277705

RESUMO

In vitro engineered skin models are emerging as an alternative platform to reduce and replace animal testing in dermatological research. Despite the progress made in recent years, considerable challenges still exist for the inclusion of diverse cell types within skin models. Blood vessels, in particular, are essential in maintaining tissue homeostasis and are one of many primary contributors to skin disease inception and progression. Substantial efforts in the past have allowed the successful fabrication of vascularized skin models that are currently utilized for disease modeling and drugs/cosmetics testing. This review first discusses the need for vascularization within tissue-engineered skin models, highlighting their role in skin grafting and disease pathophysiology. Second, the review spotlights the milestones and recent progress in the fabrication and utilization of vascularized skin models. Additionally, advances including the use of bioreactors, organ-on-a-chip devices, and organoid systems are briefly explored. Finally, the challenges and future outlook for vascularized skin models are addressed.


Assuntos
Dermatopatias , Engenharia Tecidual , Animais , Humanos , Pele , Neovascularização Patológica , Organoides
12.
ACS Omega ; 9(14): 16097-16105, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617618

RESUMO

Acoustophoretic forces have been successfully implemented into droplet-based microfluidic devices to manipulate droplets. These acoustophoretic forces in droplet microfluidic devices are typically generated as in acoustofluidic devices through transducer actuation of a piezoelectric substrate such as lithium niobate (LiNbO3), which is inherently accompanied by the emergence of electrical fields. Understanding acoustophoretic versus dielectrophoretic forces produced by electrodes and transducers within active microfluidic devices is important for the optimization of device performance during design iterations. In this case study, we design microfluidic devices with a droplet injection module and report an experimental strategy to deduce the respective contribution of the acoustophoretic versus dielectrophoretic forces for the observed droplet injection. Our PDMS-based devices comprise a standard oil-in-water droplet-generating module connected to a T-junction injection module featuring actuating electrodes. We use two different electrode geometries produced within the same PDMS slab as the droplet production/injection channels by filling low-melting-point metal alloy into channels that template the electrode geometries. When these electrodes are constructed on LiNbO3 as the substrate, they have a dual function as a piezoelectric transducer, which we call embedded liquid metal interdigitated transducers (elmIDTs). To decipher the contribution of acoustophoretic versus dielectrophoretic forces, we build the same devices on either piezoelectric LiNbO3 or nonpiezo active glass substrates with different combinations of physical device characteristics (i.e., elmIDT geometry and alignment) and operate in a range of phase spaces (i.e., frequency, voltage, and transducer polarity). We characterize devices using techniques such as laser Doppler vibrometry (LDV) and infrared imaging, along with evaluating droplet injection for our series of device designs, constructions, and operating parameters. Although we find that LiNbO3 device designs generate acoustic fields, we demonstrate that droplet injection occurs only due to dielectrophoretic forces. We deduce that droplet injection is caused by the coupled dielectrophoretic forces arising from the operation of elmIDTs rather than by acoustophoretic forces for this specific device design. We arrive at this conclusion because equivalent droplet injection occurs without the presence of an acoustic field using the same electrode designs on nonpiezo active glass substrate devices. This work establishes a methodology to pinpoint the major contributing force of droplet manipulation in droplet-based acoustomicrofluidics.

13.
J Am Chem Soc ; 135(9): 3339-42, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23419177

RESUMO

Activation, ex vivo expansion of T cells, differentiation into a regulatory subset, and its phenotype-specific high-throughput selection represent major challenges in immunobiology. In part, this is due to the lack of technical means to synthesize suitable 3D extracellular systems to imitate ex vivo the cellular interactions between T cells and antigen-presenting cells (APCs). In this study, we synthesized a new type of gold-linked surfactant and used a drop-based microfluidic device to develop and characterize novel nanostructured and specifically biofunctionalized droplets of water-in-oil emulsions as 3D APC analogues. Combining flexible biofunctionalization with the pliable physical properties of the nanostructured droplets provided this system with superior properties in comparison with previously reported synthetic APC analogues.


Assuntos
Células Apresentadoras de Antígenos/química , Ouro/química , Nanopartículas Metálicas/química , Óleos/química , Linfócitos T/química , Água/química , Células Apresentadoras de Antígenos/metabolismo , Ouro/metabolismo , Técnicas Analíticas Microfluídicas , Óleos/metabolismo , Tamanho da Partícula , Propriedades de Superfície , Tensoativos/química , Tensoativos/metabolismo , Linfócitos T/metabolismo , Água/metabolismo
14.
Methods Mol Biol ; 2654: 263-276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106188

RESUMO

Extracellular vesicles (EVs) are lipid membrane-enclosed compartments released by cells for intercellular communication in homeostasis and disease. Studies have shown great therapeutic potential of EVs, including but not limited to regenerative and immunomodulatory therapies. Additionally, EVs are promising next-generation drug delivery systems due to their biocompatibility, low immunogenicity, and inherent target specificity. However, clinical application of EVs is so far limited due to challenges in scaling up production, high heterogeneity, batch-to-batch variation, and limited control over composition. Although attaining a fundamental characterization of EVs' functions is a compelling goal, these limitations have hindered a full understanding. Therefore, there is rising interest in exploiting the beneficial properties of EVs while gaining better control over their production and composition. Herein, we describe a method for the bottom-up assembly of bioinspired, fully synthetic vesicles that mimic the most important biophysical and biochemical properties of natural EVs.


Assuntos
Vesículas Extracelulares , Sistemas de Liberação de Medicamentos , Comunicação Celular , Imunomodulação
15.
Adv Healthc Mater ; 12(11): e2202789, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599129

RESUMO

The extracellular matrix (ECM) plays an immense role in the homeostasis of tissues and organs, can function as a barrier for infectious agents, but is also exploited by pathogens during infection. Therefore, the development of well-defined 3D ECM models in the form of microcapsules to elucidate the interactions between ECM components and pathogens in confinement and study disease infectivity is important, albeit challenging. Current limitations are mainly attributed to the lack of biocompatible methods for the production of protein-based microcapsules. Herein, hollow ECM-based microcapsules from laminin-111 or laminin-111/collagen IV are generated to investigate the behavior of organisms within confined 3D extracellular matrices. Microcapsules are created using water-in-oil emulsion droplets stabilized by block copolymer surfactants as templates for the charge-mediated attraction of laminin or laminin-collagen proteins to the droplets' inner periphery, allowing for the formation of modular ECM-based microcapsules with tunable biophysical and biochemical properties and organism encapsulation. The release of E. coli-laden ECM-based protein microcapsules into a physiological environment revealed differences in the dynamic behavior of E. coli depending on the constitution of the surrounding ECM protein matrix. The developed ECM-based protein microcapsules have the potential to be implemented in several biomedical applications, including the design of in vitro infection models.


Assuntos
Proteínas da Matriz Extracelular , Laminina , Laminina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Cápsulas , Escherichia coli , Matriz Extracelular/metabolismo , Colágeno Tipo IV/metabolismo
16.
Macromol Biosci ; 23(8): e2200437, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36459417

RESUMO

Imitation of cellular processes in cell-like compartments is a current research focus in synthetic biology. Here, a method is introduced for assembling an artificial cytoskeleton in a synthetic cell model system based on a poly(N-isopropyl acrylamide) (PNIPAM) composite material. Toward this end, a PNIPAM-based composite material inside water-in-oil droplets that are stabilized with PNIPAM-functionalized and commercial fluorosurfactants is introduced. The temperature-mediated contraction/release behavior of the PNIPAM-based cytoskeleton is investigated. The reversibility of the PNIPAM transition is further examined in bulk and in droplets and it could be shown that hydrogel induced deformation could be used to controllably manipulate droplet-based synthetic cell motility upon temperature changes. It is envisioned that a combination of the presented artificial cytoskeleton with naturally occurring components might expand the bandwidth of the bottom-up synthetic biology.


Assuntos
Células Artificiais , Hidrogéis , Água , Temperatura , Citoesqueleto
17.
Sci Adv ; 9(6): eadf6182, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36753553

RESUMO

Acoustic waves exert forces when they interact with matter. Shaping ultrasound fields precisely in 3D thus allows control over the force landscape and should permit particulates to fall into place to potentially form whole 3D objects in "one shot." This is promising for rapid prototyping, most notably biofabrication, since conventional methods are typically slow and apply mechanical or chemical stress on biological cells. Here, we realize the generation of compact holographic ultrasound fields and demonstrate the one-step assembly of matter using acoustic forces. We combine multiple holographic fields that drive the contactless assembly of solid microparticles, hydrogel beads, and biological cells inside standard labware. The structures can be fixed via gelation of the surrounding medium. In contrast to previous work, this approach handles matter with positive acoustic contrast and does not require opposing waves, supporting surfaces or scaffolds. We envision promising applications of 3D holographic ultrasound fields in tissue engineering and additive manufacturing.


Assuntos
Holografia , Som , Engenharia Tecidual , Acústica , Hidrogéis/química
18.
ACS Nano ; 17(23): 23913-23923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37976416

RESUMO

The ongoing COVID-19 pandemic has been brought on by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spike glycoprotein (S), which decorates the viral envelope forming a corona, is responsible for the binding to the angiotensin-converting enzyme 2 (ACE2) receptor and initiating the infection. In comparison to previous variants, Omicron S presents additional binding sites as well as a more positive surface charge. These changes hint at additional molecular targets for interactions between virus and cell, such as the cell membrane or proteoglycans on the cell surface. Herein, bottom-up assembled synthetic SARS-CoV-2 miniviruses (MiniVs), with a lipid composition similar to that of infectious particles, are implemented to study and compare the binding properties of Omicron and Alpha variants. Toward this end, a systematic functional screening is performed to study the binding ability of Omicron and Alpha S proteins to ACE2-functionalized and nonfunctionalized planar supported lipid bilayers. Moreover, giant unilamellar vesicles are used as a cell membrane model to perform competitive interaction assays of the two variants. Finally, two cell lines with and without presentation of the ACE2 receptor are used to confirm the binding properties of the Omicron and Alpha MiniVs to the cellular membrane. Altogether, the results reveal a significantly higher affinity of Omicron S toward both the lipid membrane and ACE2 receptor. The research presented here highlights the advantages of creating and using bottom-up assembled SARS-CoV-2 viruses to understand the impact of changes in the affinity of S for ACE2 in infection studies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Pandemias , Glicoproteína da Espícula de Coronavírus , Bicamadas Lipídicas , Proteoglicanas , Ligação Proteica
19.
Nat Commun ; 13(1): 6530, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323671

RESUMO

Bottom-up synthetic biology provides new means to understand living matter by constructing minimal life-like systems. This principle can also be applied to study infectious diseases. Here we summarize approaches and ethical considerations for the bottom-up assembly of viral replication cycles.


Assuntos
Biologia Sintética , Replicação Viral
20.
Biomaterials ; 285: 121522, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35500392

RESUMO

Immune vigilance ensures body integrity by eliminating malignant cells through the complex but coordinated cooperation of highly diversified lymphocytes populations. The sheer complexity of the immune system has slowed development of immunotherapies based on top-down genetic engineering of lymphocytes. In contrast, bottom-up assembly of synthetic cell compartments has contributed novel engineering strategies to reverse engineer and understand cellular phenomena as molecularly defined systems. Towards reducing the complexity of immunological systems, herein, a bottom-up approach for controlled assembly of fully-synthetic immune-inspired cells from predefined molecular components based on giant unilamellar vesicles is described. For construction of target-specific cytotoxic immune cells, the Fas-ligand-based apoptosis-inducing immune cell module is combined with an antibody-mediated cellular cytotoxicity-inspired system. The designed immune cells identify leukemia cells by specific surface antigens. Subsequently, they form stable attachments sites and eliminate their targets by induction of apoptosis. A structural and functional characterization of the synthetic immune cells by means of microfluidics, live cell, confocal and electron microscopy, dynamic light scattering as well as flow cytometry is presented. This study demonstrates the bioinspired construction of effector immune cells from defined molecular building blocks, enabling learning-by-building approaches in synthetic immunology.


Assuntos
Antineoplásicos , Células Artificiais , Células Artificiais/química , Citotoxicidade Imunológica , Proteína Ligante Fas , Imunoterapia , Microfluídica , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA