Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(4)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310708

RESUMO

This study describes three closely related proteins, cloned from Brevibacillus laterosporus strains, that are lethal upon feeding to Diabrotica virgifera virgifera LeConte, the western corn rootworm (WCR). Mpp75Aa1, Mpp75Aa2 and Mpp75Aa3 were toxic to WCR larvae when fed purified protein. Transgenic plants expressing each mMpp75Aa protein were protected from feeding damage and showed significant reduction in adult emergence from infested plants by both susceptible and Cry3Bb1 and Cry34Ab1/Cry35Ab1-resistant WCR. These results demonstrate that proteins from B. laterosporus are as efficacious as the well-known Bacillus thuringiensis (Bt) insecticidal proteins in controlling major insect pests such as WCR. The deployment of transgenic maize expressing mMpp75Aa along with other active molecules lacking cross-resistance have the potential to be a useful tool for control of WCR populations resistant to current Bt traits.IMPORTANCE Insects feeding on roots of crops can damage the plant roots resulting in yield loss due to poor water and nutrient uptake and plant lodging. In maize the western corn rootworm (WCR) can cause severe damage to the roots resulting in significant economic loss for farmers. Genetically modified (GM) expressing Bacillus thuringiensis (Bt) insect control proteins, has provided a solution for control of these pests. In recent years populations of WCR resistant to the Bt proteins in commercial GM maize have emerged. There is a need to develop new insecticidal traits for the control of WCR populations resistant to current commercial traits. New proteins with commercial level efficacy on WCR from sources other than Bt are becoming more critical. The Mpp75Aa proteins, from B. laterosporus, when expressed in maize, are efficacious against the resistant populations of WCR and have the potential to provide solutions for control of resistant WCR.

2.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31175187

RESUMO

Two new modified Bacillus thuringiensis (Bt) proteins, Cry1Da_7 and Cry1B.868, with activity against fall armyworms (FAW), Spodoptera frugiperda (J.E. Smith), were evaluated for their potential to bind new insect receptors compared to proteins currently deployed as plant-incorporated protectants (PIPs) in row crops. Results from resistant insect bioassays, disabled insecticidal protein (DIP) bioassays, and cell-based assays using insect cells expressing individual receptors demonstrate that receptor utilizations of the newly modified Cry1Da_7 and Cry1B.868 proteins are distinct from each other and from those of commercially available Bt proteins such as Cry1F, Cry1A.105, Cry2Ab, and Vip3A. Accordingly, these two proteins target different insect proteins in FAW midgut cells and when pyramided together should provide durability in the field against this economically important pest.IMPORTANCE There is increased concern with the development of resistance to insecticidal proteins currently expressed in crop plants, especially against high-resistance-risk pests such as fall armyworm (FAW), Spodoptera frugiperda, a maize pest that already has developed resistance to Bacillus thuringiensis (Bt) proteins such as Cry1F. Lepidopteran-specific proteins that bind new insect receptors will be critical in managing current Cry1F-resistant FAW and delaying future resistance development. Results from resistant insect assays, disabled insecticidal protein (DIP) bioassays, and cell-based assays using insect cells expressing individual receptors demonstrate that target receptors of the Cry1Da_7 and Cry1B.868 proteins are different from each other and from those of commercially available Bt proteins such as Cry1F, Cry1A.105, Cry2Ab, and Vip3A. Therefore, pyramiding these two new proteins in maize will provide durable control of this economically important pest in production agriculture.


Assuntos
Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Spodoptera/efeitos dos fármacos , Spodoptera/metabolismo , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Endotoxinas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Inseticidas/metabolismo , Inseticidas/farmacologia , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/parasitologia , Ligação Proteica , Spodoptera/genética , Zea mays/parasitologia
3.
Pest Manag Sci ; 78(8): 3456-3466, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35567382

RESUMO

BACKGROUND: The sugarcane borer (SCB), Diatraea saccharalis (Lepidoptera: Crambidae), is a key pest of maize in Argentina, and genetically modified maize, producing Bacillus thuringiensis (Bt) proteins, has revolutionized the management of this insect in South America. However, field-evolved resistance to some Bt technologies has been observed in SCB in Argentina. Here we assessed a new Bt technology, MON 95379, in the laboratory, greenhouse and field for efficacy against SCB. RESULTS: In a laboratory leaf disc bioassay, both MON 95379 (producing Cry1B.868 and Cry1Da_7) and Cry1B.868_single maize (producing only Cry1B.868) resulted in 100% mortality of SCB. The level of Cry1B.868 in the Cry1B.868_single maize is comparable to that in MON 95379 maize. However, the Cry1Da_7 protein does not have high efficacy against SCB, as evidenced by < 20% mortality on Cry1Da_7_single leaf tissue. Total (100%) mortality of SCB in a Cry1B.868_single tissue dilution bioassay indicated that Cry1B.868_single maize meets the criteria to be classified as a high dose. Similar median lethal concentration (LC50 ) values were observed for MON 89034-R and susceptible SCB strains exposed to Cry1B.868 protein. MON 95379 also controlled SCB strains resistant to MON 89034 (Cry1A.105/Cry2Ab2) and Cry1Ab. Under field conditions in Brazil and Argentina, MON 95379 maize plants were consistently protected from SCB damage. CONCLUSION: MON 95379 maize will bring value to maize growers in South America by effectively managing SCB even in locations where resistance to other Bt-containing maize technologies has been reported. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Mariposas , Saccharum , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Brasil , Grão Comestível , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Resistência a Inseticidas , Larva , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Zea mays/genética
4.
Nat Biotechnol ; 25(11): 1322-6, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17982443

RESUMO

Commercial biotechnology solutions for controlling lepidopteran and coleopteran insect pests on crops depend on the expression of Bacillus thuringiensis insecticidal proteins, most of which permeabilize the membranes of gut epithelial cells of susceptible insects. However, insect control strategies involving a different mode of action would be valuable for managing the emergence of insect resistance. Toward this end, we demonstrate that ingestion of double-stranded (ds)RNAs supplied in an artificial diet triggers RNA interference in several coleopteran species, most notably the western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte. This may result in larval stunting and mortality. Transgenic corn plants engineered to express WCR dsRNAs show a significant reduction in WCR feeding damage in a growth chamber assay, suggesting that the RNAi pathway can be exploited to control insect pests via in planta expression of a dsRNA.


Assuntos
Besouros/genética , Controle Biológico de Vetores/métodos , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas/parasitologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Zea mays/parasitologia , Animais , Digestão , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , Zea mays/genética
5.
Nat Commun ; 11(1): 1152, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102996

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Insect Biochem Mol Biol ; 105: 79-88, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30605769

RESUMO

The development of insect resistance to pesticides via natural selection is an acknowledged agricultural issue. Likewise, resistance development in target insect populations is a significant challenge to the durability of crop traits conferring insect protection and has driven the need for novel insecticidal proteins (IPs) with alternative mechanism of action (MOA) mediated by different insect receptors. The combination or "stacking" of transgenes encoding different insecticidal proteins in a single crop plant can greatly delay the development of insect resistance, but requires sufficient knowledge of MOA to identify proteins with different receptor preferences. Accordingly, a rapid technique for differentiating the receptor binding preferences of insecticidal proteins is a critical need. This article introduces the Disabled Insecticidal Protein (DIP) method as applied to the well-known family of three-domain insecticidal proteins from Bacillus thuringiensis and related bacteria. These DIP's contain amino acid substitutions in domain 1 that render the proteins non-toxic but still capable of competing with active proteins in insect feeding assays, resulting in a suppression of the expected insecticidal activity. A set of insecticidal proteins with known differences in receptor binding (Cry1Ab3, Cry1Ac.107, Cry2Ab2, Cry1Ca, Cry1A.105, and Cry1A.1088) has been studied using the DIP method, yielding results that are consistent with previous MOA studies. When a native IP and an excess of DIP are co-administered to insects in a feeding assay, the outcome depends on the overlap between their MOAs: if receptors are shared, then the DIP saturates the receptors to which the native protein would ordinarily bind, and acts as an antidote whereas, if there is no shared receptor, the toxicity of the native insecticidal protein is not inhibited. These results suggest that the DIP methodology, employing standard insect feeding assays, is a robust and effective method for rapid MOA differentiation among insecticidal proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Controle de Insetos/métodos
7.
PLoS One ; 13(5): e0197059, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29758046

RESUMO

The use of dsRNA to control insect pests via the RNA interference (RNAi) pathway is being explored by researchers globally. However, with every new class of insect control compounds, the evolution of insect resistance needs to be considered, and understanding resistance mechanisms is essential in designing durable technologies and effective resistance management strategies. To gain insight into insect resistance to dsRNA, a field screen with subsequent laboratory selection was used to establish a population of DvSnf7 dsRNA-resistant western corn rootworm, Diabrotica virgifera virgifera, a major maize insect pest. WCR resistant to ingested DvSnf7 dsRNA had impaired luminal uptake and resistance was not DvSnf7 dsRNA-specific, as indicated by cross resistance to all other dsRNAs tested. No resistance to the Bacillus thuringiensis Cry3Bb1 protein was observed. DvSnf7 dsRNA resistance was inherited recessively, located on a single locus, and autosomal. Together these findings will provide insights for dsRNA deployment for insect pest control.


Assuntos
Animais Geneticamente Modificados/genética , Besouros/genética , RNA de Cadeia Dupla/genética , Zea mays/parasitologia , Animais , Controle Biológico de Vetores
8.
PLoS One ; 12(1): e0169175, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28060922

RESUMO

BACKGROUND AND METHODOLOGY: There is a continuing need to express new insect control compounds in transgenic maize against western corn rootworm, Diabrotica virgifera virgifera (LeConte) (WCR). In this study three experiments were conducted to determine cross-resistance between the new insecticidal DvSnf7 dsRNA, and Bacillus thuringiensis (Bt) Cry3Bb1; used to control WCR since 2003, with field-evolved resistance being reported. Laboratory susceptible and Cry3Bb1-resistant WCR were evaluated against DvSnf7 dsRNA in larval diet-incorporation bioassays. Additionally, the susceptibility of seven field and one field-derived WCR populations to DvSnf7 (and Cry3Bb1) was assessed in larval diet-overlay bioassays. Finally, beetle emergence of laboratory susceptible and Cry3Bb1-resistant WCR was evaluated with maize plants in the greenhouse expressing Cry3Bb1, Cry34Ab1/Cry35Ab1, or DvSnf7 dsRNA singly, or in combination. PRINCIPAL FINDINGS AND CONCLUSIONS: The Cry3Bb1-resistant colony had slight but significantly (2.7-fold; P<0.05) decreased susceptibility to DvSnf7 compared to the susceptible colony, but when repeated using a field-derived WCR population selected for reduced Cry3Bb1 susceptibility, there was no significant difference (P<0.05) in DvSnf7 susceptibility compared to that same susceptible population. Additionally, this 2.7-fold difference in susceptibility falls within the range of DvSnf7 susceptibility among the seven field populations tested. Additionally, there was no correlation between susceptibility to DvSnf7 and Cry3Bb1 for all populations evaluated. In greenhouse studies, there were no significant differences (P<0.05) between beetle emergence of susceptible and Cry3Bb1-resistant colonies on DvSnf7 and Cry34Ab1/Cry35Ab1, and between DvSnf7 and MON 87411 (DvSnf7 + Cry3Bb1) for the Cry3Bb1-resistant colony. These results demonstrate no cross-resistance between DvSnf7 and Cry3Bb1 against WCR. Therefore, pyramiding DvSnf7 with Bt proteins such as Cry3Bb1 and Cry34Ab1/Cry35Ab1 will provide a valuable IRM tool against WCR that will increase the durability of these Bt proteins. These results also illustrate the importance of using appropriate bioassay methods when characterizing field-evolved resistant WCR populations.


Assuntos
Besouros/efeitos dos fármacos , Besouros/patogenicidade , Endotoxinas/farmacologia , Plantas Geneticamente Modificadas/parasitologia , RNA de Cadeia Dupla/fisiologia , Zea mays/parasitologia , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Bioensaio , Besouros/genética , Resistência a Inseticidas/genética , Resistência a Inseticidas/fisiologia , RNA de Cadeia Dupla/genética
9.
Nat Commun ; 7: 12213, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27426014

RESUMO

Lygus species of plant-feeding insects have emerged as economically important pests of cotton in the United States. These species are not controlled by commercial Bacillus thuringiensis (Bt) cotton varieties resulting in economic losses and increased application of insecticide. Previously, a Bt crystal protein (Cry51Aa2) was reported with insecticidal activity against Lygus spp. However, transgenic cotton plants expressing this protein did not exhibit effective protection from Lygus feeding damage. Here we employ various optimization strategies, informed in part by protein crystallography and modelling, to identify limited amino-acid substitutions in Cry51Aa2 that increase insecticidal activity towards Lygus spp. by >200-fold. Transgenic cotton expressing the variant protein, Cry51Aa2.834_16, reduce populations of Lygus spp. up to 30-fold in whole-plant caged field trials. One transgenic event, designated MON88702, has been selected for further development of cotton varieties that could potentially reduce or eliminate insecticide application for control of Lygus and the associated environmental impacts.


Assuntos
Gossypium/genética , Gossypium/parasitologia , Heterópteros/fisiologia , Controle Biológico de Vetores , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bioensaio , Endotoxinas/química , Endotoxinas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Mutantes/metabolismo , Plantas Geneticamente Modificadas
10.
Appl Environ Microbiol ; 70(8): 4889-98, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15294828

RESUMO

The western corn rootworm, Diabrotica virgifera virgifera LeConte, is a significant pest of corn in the United States. The development of transgenic corn hybrids resistant to rootworm feeding damage depends on the identification of genes encoding insecticidal proteins toxic to rootworm larvae. In this study, a bioassay screen was used to identify several isolates of the bacterium Bacillus thuringiensis active against rootworm. These bacterial isolates each produce distinct crystal proteins with approximate molecular masses of 13 to 15 kDa and 44 kDa. Insect bioassays demonstrated that both protein classes are required for insecticidal activity against this rootworm species. The genes encoding these proteins are organized in apparent operons and are associated with other genes encoding crystal proteins of unknown function. The antirootworm proteins produced by B. thuringiensis strains EG5899 and EG9444 closely resemble previously described crystal proteins of the Cry34A and Cry35A classes. The antirootworm proteins produced by strain EG4851, designated Cry34Ba1 and Cry35Ba1, represent a new binary toxin. Genes encoding these proteins could become an important component of a sustainable resistance management strategy against this insect pest.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Besouros/crescimento & desenvolvimento , Endotoxinas/toxicidade , Controle Biológico de Vetores , Zea mays/parasitologia , Sequência de Aminoácidos , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sequência de Bases , Clonagem Molecular , Endotoxinas/química , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA