Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Glob Chang Biol ; 25(5): 1868-1876, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30737900

RESUMO

Elevated CO2 (eCO2 ) generally promotes increased grain yield (GY) and decreased grain protein concentration (GPC), but the extent to which these effects depend on the magnitude of fertilization remains unclear. We collected data on the eCO2 responses of GY, GPC and grain protein yield and their relationships with nitrogen (N) application rates across experimental data covering 11 field grown wheat (Triticum aestivum) cultivars studied in eight countries on four continents. The eCO2 -induced stimulation of GY increased with N application rates up to ~200 kg/ha. At higher N application, stimulation of GY by eCO2 stagnated or even declined. This was valid both when the yield stimulation was expressed as the total effect and using per ppm CO2 scaling. GPC was decreased by on average 7% under eCO2 and the magnitude of this effect did not depend on N application rate. The net effect of responses on GY and protein concentration was that eCO2 typically increased and decreased grain protein yield at N application rates below and above ~100 kg/ha respectively. We conclude that a negative effect on wheat GPC seems inevitable under eCO2 and that substantial N application rates may be required to sustain wheat protein yields in a world with rising CO2 .


Assuntos
Dióxido de Carbono/farmacologia , Grão Comestível/química , Gases de Efeito Estufa/farmacologia , Nitrogênio/farmacologia , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Grão Comestível/efeitos dos fármacos , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Fertilizantes/análise , Proteínas de Grãos/análise , Gases de Efeito Estufa/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo
2.
Glob Chang Biol ; 24(1): 78-84, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28722164

RESUMO

Tropospheric ozone is considered the most detrimental air pollutant for vegetation at the global scale, with negative consequences for both provisioning and climate regulating ecosystem services. In spite of recent developments in ozone exposure metrics, from a concentration-based to a more physiologically relevant stomatal flux-based index, large-scale ozone risk assessment is still complicated by a large and unexplained variation in ozone sensitivity among tree species. Here, we explored whether the variation in ozone sensitivity among woody species can be linked to interspecific variation in leaf morphology. We found that ozone tolerance at the leaf level was closely linked to leaf dry mass per unit leaf area (LMA) and that whole-tree biomass reductions were more strongly related to stomatal flux per unit leaf mass (r2  = 0.56) than to stomatal flux per unit leaf area (r2  = 0.42). Furthermore, the interspecific variation in slopes of ozone flux-response relationships was considerably lower when expressed on a leaf mass basis (coefficient of variation, CV = 36%) than when expressed on a leaf area basis (CV = 66%), and relationships for broadleaf and needle-leaf species converged when using the mass-based index. These results show that much of the variation in ozone sensitivity among woody plants can be explained by interspecific variation in LMA and that large-scale ozone impact assessment could be greatly improved by considering this well-known and easily measured leaf trait.


Assuntos
Poluentes Atmosféricos/toxicidade , Ozônio/toxicidade , Folhas de Planta/efeitos dos fármacos , Plantas/efeitos dos fármacos , Biomassa , Clima , Ecossistema , Folhas de Planta/fisiologia , Árvores/fisiologia
3.
Glob Chang Biol ; 24(10): 4869-4893, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30084165

RESUMO

Increasing both crop productivity and the tolerance of crops to abiotic and biotic stresses is a major challenge for global food security in our rapidly changing climate. For the first time, we show how the spatial variation and severity of tropospheric ozone effects on yield compare with effects of other stresses on a global scale, and discuss mitigating actions against the negative effects of ozone. We show that the sensitivity to ozone declines in the order soybean > wheat > maize > rice, with genotypic variation in response being most pronounced for soybean and rice. Based on stomatal uptake, we estimate that ozone (mean of 2010-2012) reduces global yield annually by 12.4%, 7.1%, 4.4% and 6.1% for soybean, wheat, rice and maize, respectively (the "ozone yield gaps"), adding up to 227 Tg of lost yield. Our modelling shows that the highest ozone-induced production losses for soybean are in North and South America whilst for wheat they are in India and China, for rice in parts of India, Bangladesh, China and Indonesia, and for maize in China and the United States. Crucially, we also show that the same areas are often also at risk of high losses from pests and diseases, heat stress and to a lesser extent aridity and nutrient stress. In a solution-focussed analysis of these results, we provide a crop ideotype with tolerance of multiple stresses (including ozone) and describe how ozone effects could be included in crop breeding programmes. We also discuss altered crop management approaches that could be applied to reduce ozone impacts in the shorter term. Given the severity of ozone effects on staple food crops in areas of the world that are also challenged by other stresses, we recommend increased attention to the benefits that could be gained from addressing the ozone yield gap.


Assuntos
Aclimatação/fisiologia , Agricultura/métodos , Produtos Agrícolas/fisiologia , Ozônio , Estresse Fisiológico/fisiologia , Agricultura/estatística & dados numéricos , Mudança Climática , Produtos Agrícolas/classificação , Abastecimento de Alimentos/estatística & dados numéricos , Modelos Teóricos , Melhoramento Vegetal , Especificidade da Espécie
4.
Glob Chang Biol ; 24(8): 3560-3574, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29604158

RESUMO

Introduction of high-performing crop cultivars and crop/soil water management practices that increase the stomatal uptake of carbon dioxide and photosynthesis will be instrumental in realizing the United Nations Sustainable Development Goal (SDG) of achieving food security. To date, however, global assessments of how to increase crop yield have failed to consider the negative effects of tropospheric ozone, a gaseous pollutant that enters the leaf stomatal pores of plants along with carbon dioxide, and is increasing in concentration globally, particularly in rapidly developing countries. Earlier studies have simply estimated that the largest effects are in the areas with the highest ozone concentrations. Using a modelling method that accounts for the effects of soil moisture deficit and meteorological factors on the stomatal uptake of ozone, we show for the first time that ozone impacts on wheat yield are particularly large in humid rain-fed and irrigated areas of major wheat-producing countries (e.g. United States, France, India, China and Russia). Averaged over 2010-2012, we estimate that ozone reduces wheat yields by a mean 9.9% in the northern hemisphere and 6.2% in the southern hemisphere, corresponding to some 85 Tg (million tonnes) of lost grain. Total production losses in developing countries receiving Official Development Assistance are 50% higher than those in developed countries, potentially reducing the possibility of achieving UN SDG2. Crucially, our analysis shows that ozone could reduce the potential yield benefits of increasing irrigation usage in response to climate change because added irrigation increases the uptake and subsequent negative effects of the pollutant. We show that mitigation of air pollution in a changing climate could play a vital role in achieving the above-mentioned UN SDG, while also contributing to other SDGs related to human health and well-being, ecosystems and climate change.


Assuntos
Poluição do Ar/efeitos adversos , Mudança Climática , Ozônio/química , Ozônio/toxicidade , Triticum/efeitos dos fármacos , Dióxido de Carbono/análise , Monitoramento Ambiental , Humanos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Chuva , Triticum/crescimento & desenvolvimento
5.
J Environ Manage ; 205: 274-285, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29020655

RESUMO

Ongoing urban exploitation is increasing pressure to transform urban green spaces, while there is increasing awareness that greenery provides a range of important benefits to city residents. In efforts to help resolve associated problems we have developed a framework for integrated assessments of ecosystem service (ES) benefits and values provided by urban greenery, based on the ecosystem service cascade model. The aim is to provide a method for assessing the contribution to, and valuing, multiple ES provided by urban greenery that can be readily applied in routine planning processes. The framework is unique as it recognizes that an urban greenery comprises several components and functions that can contribute to multiple ecosystem services in one or more ways via different functional traits (e.g. foliage characteristics) for which readily measured indicators have been identified. The framework consists of five steps including compilation of an inventory of indicator; application of effectivity factors to rate indicators' effectiveness; estimation of effects; estimation of benefits for each ES; estimation of the total ES value of the ecosystem. The framework was applied to assess ecosystem services provided by trees, shrubs, herbs, birds, and bees, in green areas spanning an urban gradient in Gothenburg, Sweden. Estimates of perceived values of ecosystem services were obtained from interviews with the public and workshop activities with civil servants. The framework is systematic and transparent at all stages and appears to have potential utility in the existing spatial planning processes.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Cidades , Suécia , Árvores
6.
Aerobiologia (Bologna) ; 33(4): 457-471, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167598

RESUMO

Exposure to elevated air pollution levels can aggravate pollen allergy symptoms. The aim of this study was to investigate the relationships between airborne birch (Betula) pollen, urban air pollutants NO2, O3 and PM10 and their effects on antihistamine demand in Gothenburg and Malmö, Sweden, 2006-2012. Further, the influence of large-scale weather pattern on pollen-/pollution-related risk, using Lamb weather types (LWTs), was analysed. Daily LWTs were obtained by comparing the atmospheric pressure over a 16-point grid system over southern Sweden (scale ~3000 km). They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E…). Birch pollen levels were exceptionally high under LWTs E and SE in both cities. Furthermore, LWTs with dry and moderately calm meteorological character (A, NE, E, SE) were associated with strongly elevated air pollution (NO2 and PM10) in Gothenburg. For most weather situations in both cities, simultaneously high birch pollen together with high air pollution had larger over-the-counter (OTC) sales of antihistamines than situations with high birch pollen alone. LWTs NE, E, SE and S had the highest OTC sales in both cities. In Gothenburg, the city with a higher load of both birch pollen and air pollution, the higher OTC sales were especially obvious and indicate an increased effect on allergic symptoms from air pollution. Furthermore, Gothenburg LWTs A, NE, E and SE were associated with high pollen and air pollution levels and thus classified as high-risk weather types. In Malmö, corresponding high-risk LWTs were NE, E, SE and S. Furthermore, occurrence of high pollen and air pollutants as well as OTC sales correlated strongly with vapour pressure deficit and temperature in Gothenburg (much less so in Malmö). This provides evidence that the combination of meteorological properties associated with LWTs can explain high levels of birch pollen and air pollution. Our study shows that LWTs represent a useful tool for integrated daily air quality forecasting/warning.

7.
Int J Biometeorol ; 60(1): 159-72, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26048702

RESUMO

An important ecosystem service provided by urban trees is the cooling effect caused by their transpiration. The aim of this study was to quantify the magnitude of daytime and night-time transpiration of common urban tree species in a high latitude city (Gothenburg, Sweden), to analyse the influence of weather conditions and surface permeability on the tree transpiration, and to find out whether tree transpiration contributed to daytime or nocturnal cooling. Stomatal conductance and leaf transpiration at day and night were measured on mature street and park trees of seven common tree species in Gothenburg: Tilia europaea, Quercus robur, Betula pendula, Acer platanoides, Aesculus hippocastanum, Fagus sylvatica and Prunus serrulata. Transpiration increased with vapour pressure deficit and photosynthetically active radiation. Midday rates of sunlit leaves ranged from less than 1 mmol m(-2) s(-1) (B. pendula) to over 3 mmol m(-2) s(-1) (Q. robur). Daytime stomatal conductance was positively related to the fraction of permeable surfaces within the vertically projected crown area. A simple estimate of available rainwater, comprising of precipitation sum and fractional surface permeability within the crown area, was found to explain 68% of variation in midday stomatal conductance. Night-time transpiration was observed in all studied species and amounted to 7 and 20% of midday transpiration of sunlit and shaded leaves, respectively. With an estimated night-time latent heat flux of 24 W m(-2), tree transpiration significantly increased the cooling rate around and shortly after sunset, but not later in the night. Despite a strong midday latent heat flux of 206 W m(-2), a cooling effect of tree transpiration was not observed during the day.


Assuntos
Folhas de Planta/fisiologia , Transpiração Vegetal , Temperatura , Árvores/fisiologia , Ritmo Circadiano , Cidades , Suécia , Pressão de Vapor , Água
8.
Glob Chang Biol ; 21(8): 3152-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25846203

RESUMO

A key part of the uncertainty in terrestrial feedbacks on climate change is related to how and to what extent nitrogen (N) availability constrains the stimulation of terrestrial productivity by elevated CO2 (eCO2 ), and whether or not this constraint will become stronger over time. We explored the ecosystem-scale relationship between responses of plant productivity and N acquisition to eCO2 in free-air CO2 enrichment (FACE) experiments in grassland, cropland and forest ecosystems and found that: (i) in all three ecosystem types, this relationship was positive, linear and strong (r(2) = 0.68), but exhibited a negative intercept such that plant N acquisition was decreased by 10% when eCO2 caused neutral or modest changes in productivity. As the ecosystems were markedly N limited, plants with minimal productivity responses to eCO2 likely acquired less N than ambient CO2 -grown counterparts because access was decreased, and not because demand was lower. (ii) Plant N concentration was lower under eCO2 , and this decrease was independent of the presence or magnitude of eCO2 -induced productivity enhancement, refuting the long-held hypothesis that this effect results from growth dilution. (iii) Effects of eCO2 on productivity and N acquisition did not diminish over time, while the typical eCO2 -induced decrease in plant N concentration did. Our results suggest that, at the decennial timescale covered by FACE studies, N limitation of eCO2 -induced terrestrial productivity enhancement is associated with negative effects of eCO2 on plant N acquisition rather than with growth dilution of plant N or processes leading to progressive N limitation.


Assuntos
Dióxido de Carbono/farmacologia , Nitrogênio/metabolismo , Plantas/metabolismo , Agricultura , Mudança Climática , Ecossistema , Florestas , Poaceae
9.
Environ Sci Technol ; 48(11): 6168-76, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24810838

RESUMO

Formation and evolution of secondary organic aerosols (SOA) from biogenic VOCs influences the Earth's radiative balance. We have examined the photo-oxidation and aging of boreal terpene mixtures in the SAPHIR simulation chamber. Changes in thermal properties and chemical composition, deduced from mass spectrometric measurements, were providing information on the aging of biogenic SOA produced under ambient solar conditions. Effects of precursor mixture, concentration, and photochemical oxidation levels (OH exposure) were evaluated. OH exposure was found to be the major driver in the long term photochemical transformations, i.e., reaction times of several hours up to days, of SOA and its thermal properties, whereas the initial concentrations and terpenoid mixtures had only minor influence. The volatility distributions were parametrized using a sigmoidal function to determine TVFR0.5 (the temperature yielding a 50% particle volume fraction remaining) and the steepness of the volatility distribution. TVFR0.5 increased by 0.3±0.1% (ca. 1 K), while the steepness increased by 0.9±0.3% per hour of 1×10(6) cm(-3) OH exposure. Thus, aging reduces volatility and increases homogeneity of the vapor pressure distribution, presumably because highly volatile fractions become increasingly susceptible to gas phase oxidation, while less volatile fractions are less reactive with gas phase OH.


Assuntos
Poluentes Atmosféricos/química , Terpenos/química , Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Gases/química , Oxirredução , Processos Fotoquímicos , Terpenos/análise , Volatilização
10.
Plant Environ Interact ; 5(1): e10134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38323128

RESUMO

Oxidative stress from ozone (O3) causes plants to alter their emission of biogenic volatile organic compounds (BVOC) and their photosynthetic rate. Stress reactions from O3 on birch trees can result in prohibited plant growth and lead to increased BVOC emission rates as well as changes in their compound blend to emit more monoterpenes (MT) and sesquiterpenes (SQT). BVOCs take part in atmospheric reactions such as enhancing the production of secondary organic aerosols (SOA). As the compound blend and emission rate change with O3 stress, this can influence the atmospheric conditions by affecting the production of SOA. Studying the stress responses of plants provides important information on how these reactions might change, which is vital to making better predictions of the future climate. In this study, measurements were taken to find out how the leaves of mature mountain birch trees (Betula pubescens ssp. czerepanovii) respond to different levels of elevated O3 exposure in situ depending on leaf age. We found that leaves from both early and late summers responded with induced SQT emission after exposure to 120 ppb O3. Early leaves were, however, more sensitive to increased O3 concentrations, with enhanced emission of green leaf volatiles (GLV) and tendencies of both induced leaf senescence as well as poor recovery in the photosynthetic rate between exposures. Late leaves had more stable photosynthetic rates throughout the experiment and responded less to exposure at different O3 levels.

11.
Heliyon ; 9(2): e13548, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846706

RESUMO

Antimony (Sb) is a toxic metalloid, which has been increasingly used in the brake lining of vehicles, and increased concentrations have been found in soils near abundant traffic. However, since very few investigations of Sb accumulation in urban vegetation have been undertaken there exists a knowledge gap. We studied the concentrations of Sb in leaves and needles of trees in the Gothenburg City area, Sweden. In addition, lead (Pb), also associated with traffic, was investigated. Sb and Pb concentrations of Quercus palustris leaves at seven sites with contrasting traffic intensity varied substantially, correlated with the traffic-related PAH (polycyclic aromatic hydrocarbon) air pollution at the sites and increased during the growing season. Sb but not Pb concentrations were significantly higher in needles of Picea abies and Pinus sylvestris near major roads compared to sites at larger distances. In Pinus nigra needles at two urban streets both Sb and Pb were higher compared to an urban nature park environment, emphasising the role of traffic emissions for these elements. A continued accumulation of Sb and Pb in three years old needles of Pinus nigra, two years old needles of Pinus sylvestris and eleven years old needles of Picea abies was observed. Our data suggest a pronounced link between traffic pollution and Sb accumulation in leaves and needles, where the particles carrying Sb seem not to be transported very far from the source. We also conclude that there exists a strong potential for Sb and Pb bioaccumulation over time in leaves and needles. Implications of these findings are that increased concentrations of toxic Sb and Pb are likely to prevail in environments with high traffic intensity and that Sb can enter the ecological food chain by accumulation in leaves and needles, which is important for the biogeochemical cycling.

12.
Sci Total Environ ; 805: 150163, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34536858

RESUMO

Trees have the potential to improve urban air quality as leaves and needles capture air pollutants from the air, but further empirical data has been requested to quantify these effects. We measured the concentration of 32 polycyclic aromatic hydrocarbons (PAHs) in leaves of pin oak (Quercus palustris) and needles of black pine (Pinus nigra) in the City of Gothenburg, Sweden, during the summer of 2018. Oak leaves were collected twice (June, September), while one-year-old (C + 1) and three-year-old (C + 3) pine needles were sampled in June to study the temporal development of leaf/needle PAH concentrations. Specific leaf area (SLA) was estimated, which permitted calculation of leaf/needle area-based PAH content that were compared with the mass-based concentration. In addition, the air concentration of PAHs and NO2 was measured using passive samplers. There was a strong correlation between air concentrations of PAH and NO2, indicating that the pollutants to a large degree originate from the same sources. In the oak leaves there was a significant decrease in low molecular mass PAHs (L-PAH, mainly gaseous) between June and September, but a significant increase in high molecular mass PAHs (H-PAH, mainly particle-bound). There was a strong correlation between L-PAH concentration in leaves and in air indicating an influence of equilibrium processes between ambient air and leaf. In the pine needles, there was a significant increase of both L-PAH and H-PAH in three-year-old needles compared to one-year-old needles. Pine was superior to oak in accumulating PAHs from the air, especially for L-PAHs when comparing area-based content. However, H-PAH concentrations were higher in oak leaves compared to pine needles on a leaf mass basis, emphasizing the importance of how concentrations are expressed. The results from this study can contribute to the development of urban planning strategies regarding the effect of vegetation on air quality.


Assuntos
Poluentes Atmosféricos , Pinus , Hidrocarbonetos Policíclicos Aromáticos , Quercus , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Folhas de Planta/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Suécia
13.
Glob Chang Biol ; 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-23505094

RESUMO

Although it is established that there exist potential trade-offs between grain yield and grain quality in wheat exposed to elevated carbon dioxide (CO2 ) and ozone (O3 ), their underlying causes remain poorly explored. To investigate the processes affecting grain quality under altered CO2 and O3 , we analysed 57 experiments with CO2 or O3 exposure in different exposure systems. The study covered 24 cultivars studied in 112 experimental treatments from 11 countries. A significant growth dilution effect on grain protein was found: a change in grain yield of 10% by O3 was associated with a change in grain protein yield of 8.1% (R2 =0.96), while a change in yield effect of 10% by CO2 was linked to a change in grain protein yield effect of 7.5% (R2 =0.74). Superimposed on this effect, elevated CO2 , but not O3 , had a significant negative effect on grain protein yield also in the absence of effects on grain yield, indicating that there exists a process by which CO2 restricts grain protein accumulation, which is absent for O3 . Grain mass, another quality trait, was more strongly affected by O3 than grain number, while the opposite was true for CO2 . Harvest index was strongly and negatively influenced by O3 , but was unaffected by CO2 . We conclude that yield vs. protein trade-offs for wheat in response to CO2 and O3 are constrained by close relationships between effects on grain biomass and less than proportional effects on grain protein. An important and novel finding was that elevated CO2 has a direct negative effect on grain protein accumulation independent of the yield effect, supporting recent evidence of CO2 -induced impairment of nitrate uptake/assimilation. Finally, our results demonstrated that processes underlying responses of grain yield vs. quality trade-offs are very different in wheat exposed to elevated O3 compared to elevated CO2 .

14.
Nat Food ; 1(12): 775-782, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37128059

RESUMO

Plant responses to rising atmospheric carbon dioxide (CO2) concentrations, together with projected variations in temperature and precipitation will determine future agricultural production. Estimates of the impacts of climate change on agriculture provide essential information to design effective adaptation strategies, and develop sustainable food systems. Here, we review the current experimental evidence and crop models on the effects of elevated CO2 concentrations. Recent concerted efforts have narrowed the uncertainties in CO2-induced crop responses so that climate change impact simulations omitting CO2 can now be eliminated. To address remaining knowledge gaps and uncertainties in estimating the effects of elevated CO2 and climate change on crops, future research should expand experiments on more crop species under a wider range of growing conditions, improve the representation of responses to climate extremes in crop models, and simulate additional crop physiological processes related to nutritional quality.

15.
Ambio ; 38(8): 402-5, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20175437

RESUMO

Ozone concentrations are generally considerably lower over northern Europe as compared with continental and southern Europe. However, ozone becomes toxic for vegetation mainly after it has been taken up into the leaf interior through the stomata. The rates of ozone uptake into the leaves are, somewhat simplified, the product of the air ozone concentrations and the degree of stomatal opening. The phytotoxic impacts of ozone can be almost as important in northern Europe as they are in continental and southern Europe. The long daylight hours as well as the rather humid environment conditions, both in the air and soil, promote stomatal openings in northern Europe. This article summarizes scientific evidence that supports the conclusion that ozone abatement policies regarding vegetation in Europe, as well as in the rest of the world, should be based on estimates of the leaf ozone uptake and not only on the ozone concentration in the air.


Assuntos
Oxidantes Fotoquímicos/toxicidade , Ozônio/toxicidade , Plantas/efeitos dos fármacos , Poluição do Ar/legislação & jurisprudência , Países Bálticos , Estresse Oxidativo , Ozônio/metabolismo , Plantas/metabolismo , Países Escandinavos e Nórdicos
16.
Ambio ; 38(8): 448-51, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20175445

RESUMO

Ozone was measured using passive diffusion samplers at alpine Latnjajaure (980 m above sea level [asl]) in the northern Scandian Mountain Range during spring and summer 2006-2008, and year-round at three further sites in northernmost Sweden 2004-2008. These observations were compared with ozone concentrations from three permanent monitoring stations using ultraviolet absorption instruments. Ozone concentrations at Latnjajaure were higher than at the closest monitoring site, illustrating the importance of high elevation for ozone. At the northern sites the ozone spring peak was more pronounced, higher, and earlier (April maximum) compared to a site in south Sweden (May maximum). During summer, ozone concentrations were higher in south Sweden. Presently, the growing season largely starts after the ozone spring peak in north Sweden but is likely to start earlier in the future climate. This could lead to an increased risk for ozone effects on vegetation if the current yearly ozone cycle persists.


Assuntos
Ar/análise , Dióxido de Nitrogênio/análise , Oxidantes Fotoquímicos/análise , Ozônio/análise , Altitude , Estações do Ano , Suécia
17.
Ambio ; 38(8): 425-31, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20175441

RESUMO

Substantial impacts of near-ambient ozone concentrations on agricultural crops, trees, and seminatural vegetation are demonstrated for southern Sweden. Impacts of ambient ozone levels (2-15 microL L(-1) hr annual accumulated ozone exposure over a threshold of 40 nL L(-1) [AOT40]) range from a 2%-10% reduction for trees (e.g., leaf chlorophyll, tree growth) up to a 15% reduction for crops (e.g., yield, wheat/potato). Visible leaf injury on bioindicator plants caused by ambient ozone levels has been clearly demonstrated. The humid climatic conditions in Sweden promote high rates of leaf ozone uptake at a certain ozone concentration. This likely explains the comparatively large ozone impacts found for vegetation in southern Sweden at relatively low ozone concentrations in the air. It is important that the future methods used for the representation of ozone impacts on vegetation across Europe are based on the leaf ozone uptake concept and not on concentration-based exposure indices, such as AOT40.


Assuntos
Produtos Agrícolas/efeitos dos fármacos , Oxidantes Fotoquímicos/toxicidade , Ozônio/toxicidade , Árvores/efeitos dos fármacos , Ar/análise , Oxidantes Fotoquímicos/análise , Ozônio/análise , Suécia
18.
Sci Total Environ ; 664: 908-914, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30769314

RESUMO

Data from experiments where field-grown wheat was exposed to ozone were collated in order to compare the effects in Europe, Asia and North America using dose-response regression. In addition to grain yield, average grain mass and harvest index were included to reflect the influence of ozone on the crop growth pattern. In order to include as many experiments as possible, daytime average ozone concentration was used as the ozone exposure index, but AOT40, estimated from average ozone concentrations, was also used to compare the performance of the two exposure metrics. The response to ozone differed significantly between the continents only for grain yield when using AOT40 as the exposure index. North American wheat was less sensitive than European and Asian that responded similarly. The variation in responses across all three continents was smallest for harvest index, followed by grain mass and grain yield. The highly consistent effect on harvest index shows that not only effects on biomass accumulation, but also on the partitioning of biomass, are important for the ozone-induced grain yield loss in wheat. The average duration of daily ozone exposure was longer in European experiments compared to North American and Asian. It cannot be excluded that this contributed to the indicated higher ozone sensitivity in European wheat in relation to North American. The main conclusions from this study are that on the average the response of wheat to ozone was lower for the older North American experiments and that the ozone response of the growth pattern reflected by grain mass and harvest index did not differ between continents.


Assuntos
Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental , Ozônio/toxicidade , Triticum/fisiologia , Ásia , Biomassa , Europa (Continente) , América do Norte
19.
Environ Pollut ; 252(Pt A): 1-7, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31146222

RESUMO

A stomatal ozone (O3) flux-response relationship for relative yield of maize was established by parameterizing a Jarvis stomatal conductance model. For the function (fVPD) describing the limitation of stomatal conductance by vapor pressure deficit (VPD, kPa), cumulative VPD during daylight hours was superior to hourly VPD. The latter function is proposed as a methodological improvement of this multiplicative model when stomatal conductance peaks during the morning and it is reduced later as it is the case of maize in this experiment. The model agreed relatively well with the measured stomatal conductance (R2 = 0.63). Based on the comparison of R2 values of the response functions, POD6 (Phytotoxic Ozone Dose over an hourly threshold 6 nmol m-2 s-1) and AOT40 (accumulated hourly O3 concentrations over a threshold of 40 ppb) performed similarly. The critical levels based on POD6 and AOT40 for 5% reduction in maize yield were 1.17 mmol m-2 PLA and 8.70 ppm h, respectively. In comparison with other important crops, the ranking of sensitivity of maize strongly differed depending on the O3 metric used, AOT40 or POD6. The newly proposed response functions are relevant for O3 risk assessment for this crop in Asia.


Assuntos
Poluentes Atmosféricos/toxicidade , Produtos Agrícolas/crescimento & desenvolvimento , Ozônio/toxicidade , Estômatos de Plantas/fisiologia , Zea mays/crescimento & desenvolvimento , Poluentes Atmosféricos/análise , Ásia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/fisiologia , Ozônio/análise , Zea mays/efeitos dos fármacos , Zea mays/fisiologia
20.
Environ Pollut ; 155(1): 99-111, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18063256

RESUMO

Measurements of ground-level ozone concentrations and meteorology (temperature, vapour pressure deficit (VPD), solar radiation) at the monitoring site Ostad (south-west Sweden) were compared to data from the corresponding grid in the EMEP photo-oxidant model for 1997, 1999 and 2000. The influence of synoptic weather on the agreement between model and measurements was studied. Implications of differences between modelled and observed inputs for ozone flux calculations for wheat and potato were investigated. The EMEP model output of ozone, temperature and VPD correlated well with measurements during daytime. Deviations were larger during the night, especially in calm conditions, attributed to local climatological conditions at the monitoring site deviating from average conditions of the grid. These differences did not lead to significant differences in calculated ozone uptake, which was reproduced remarkably well. The uptake calculations were sensitive to errors in the ozone and temperature input data, especially when including a flux threshold.


Assuntos
Poluentes Atmosféricos/análise , Simulação por Computador , Conceitos Meteorológicos , Modelos Teóricos , Oxidantes Fotoquímicos/análise , Ozônio/análise , Movimentos do Ar , Poluentes Atmosféricos/metabolismo , Monitoramento Ambiental/métodos , Oxidantes Fotoquímicos/metabolismo , Ozônio/metabolismo , Plantas/metabolismo , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA