RESUMO
The generation of induced pluripotent stem cells (iPSCs) from somatic cells provides an excellent model to study mechanisms of transcription factor-induced global alterations of the epigenome and genome function. Here, we have investigated the early transcriptional events of cellular reprogramming triggered by the co-expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) in mouse embryonic fibroblasts (MEFs) and mouse hepatocytes (mHeps). In this analysis, we identified a gene regulatory network composed of nine transcriptional regulators (9TR; Cbfa2t3, Gli2, Irf6, Nanog, Ovol1, Rcan1, Taf1c, Tead4, and Tfap4), which are directly targeted by OSKM, in vivo. Functional studies using single and double shRNA knockdowns of any of these factors caused disruption of the network and dramatic reductions in reprogramming efficiency, indicating that this network is essential for the induction and establishment of pluripotency. We demonstrate that the stochastic co-expression of 9TR network components occurs in a remarkably small number of cells, approximating the percentage of terminally reprogrammed cells as a result of dynamic molecular events. Thus, the early DNA-binding patterns of OSKM and the subsequent probabilistic co-expression of essential 9TR components in subpopulations of cells undergoing reprogramming steer the reconstruction of a gene regulatory network marking the transition to pluripotency.
Assuntos
Reprogramação Celular/genética , Fibroblastos/fisiologia , Redes Reguladoras de Genes/genética , Hepatócitos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Células-Tronco Embrionárias/fisiologia , Feminino , Células HEK293 , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Fatores de Transcrição/genética , Transcrição Gênica/genéticaRESUMO
Generation of induced pluripotent stem cells from specialized cell types provides an excellent model to study how cells maintain their stability, and how they can change identity, especially in the context of disease. Previous studies have shown that chromatin safeguards cell identity by acting as a barrier to reprogramming. We investigated mechanisms by which the histone macroH2A variants inhibit reprogramming and discovered that they work as gate keepers of the mesenchymal cell state by blocking epithelial transition, a step required for reprogramming of mouse fibroblasts. More specifically, we found that individual macroH2A variants regulate the expression of defined sets of genes, whose overall function is to stabilize the mesenchymal gene expression program, thus resisting reprogramming. We identified a novel gene network (MSCN, mesenchymal network) composed of 63 macroH2A-regulated genes related to extracellular matrix, cell membrane, signaling and the transcriptional regulators Id2 and Snai2, all of which function as guardians of the mesenchymal phenotype. ChIP-seq and KD experiments revealed a macroH2A variant-specific combinatorial targeting of the genes reconstructing the MSCN, thus generating robustness in gene expression programs to resist cellular reprogramming.
Assuntos
Reprogramação Celular , Cromatina , Animais , Camundongos , Cromatina/genética , Membrana Celular , Reprogramação Celular/genética , Sequenciamento de Cromatina por Imunoprecipitação , Matriz ExtracelularRESUMO
Transcription factor-induced reprogramming of somatic cells to pluripotency is mediated via profound alterations in the epigenetic landscape. The histone variant macroH2A1 (mH2A1) is a barrier to the cellular reprogramming process. We demonstrate here that mH2A1 blocks reprogramming and contributes to the preservation of cell identity by trapping cells at the very early stages of the process, namely, at the mesenchymal-to-epithelial transition (MET). We provide a comprehensive analysis of the genomic sites occupied by the mH2A1 nucleosomes in human fibroblasts and embryonic stem (ES) cells and how they affect the reprogramming of fibroblasts to pluripotency. We have integrated chromatin immunoprecipitation sequencing (ChIP-seq) data with transcriptome sequencing (RNA-seq) data using cells containing reduced levels of mH2A1 and have inferred mH2A1-centered gene-regulatory networks that support the fibroblast and ES cell fates. We found that the exact positions of mH2A1 nucleosomes in regulatory regions of specific network genes with key regulatory roles guarantee the functional robustness of the regulatory networks. Using the reconstructed networks, we can predict and validate several components and their interactions in the establishment of stable cell types by limiting progression to alternative cell fates.
Assuntos
Transição Epitelial-Mesenquimal/genética , Histonas/genética , Histonas/fisiologia , Diferenciação Celular , Reprogramação Celular/fisiologia , Cromatina , Imunoprecipitação da Cromatina/métodos , Células-Tronco Embrionárias/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Fibroblastos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Variação Genética/genética , Genoma , Humanos , Células-Tronco Pluripotentes Induzidas , Nucleossomos , Regiões Promotoras Genéticas/genética , Fatores de Transcrição , TranscriptomaRESUMO
In the present study, we investigated the induction of the p38-MAPK signalling pathway by copper, as exemplified by CuCl(2), in the isolated perfused heart of the amphibian Rana ridibunda. We found that p38-MAPK phosphorylation by CuCl(2) occurs in a dose-dependent manner, with maximum activation (8.73+/-1.43-fold relative to control values) attained by perfusion with 500 micromol l(-1) CuCl(2) for 15 min, while this activation sustained even after 60 min of reperfusion with normal bicarbonate buffer. CuCl(2) also induced the phosphorylation of the small heat shock protein 27 (Hsp27) in a p38-MAPK dependent manner, as revealed by experiments using the p38-MAPK inhibitor SB203580. p38-MAPK and Hsp27 phosphorylations were also strongly induced by hyperthermia (42 degrees C), while the simultaneous use of hyperthermia and CuCl(2) had a synergistic effect on p38-MAPK activation. Furthermore, perfusions with the potent antioxidant L-ascorbic acid (100 micromol l(-1)), the antioxidant enzymes catalase (CAT) (150 U ml(-1)) or superoxide dismutase (SOD) (30 U ml(-1)) in the presence of 500 micromol l(-1) CuCl(2) did not attenuate the CuCl(2)-induced p38-MAPK activation, implying that at least the reactive oxygen species (ROS) scavenged by these agents are not implicated in this kinase activation. The p38-MAPK phosphorylation induced by the combined action of CuCl(2) and hyperthermia was partially inhibited by catalase, indicating that hyperthermia possibly activates the kinase through the production of H(2)O(2). Caspase-3, an effector protease of apoptosis, remained inactive in hearts perfused at normal or hyperthermic conditions, in the absence or presence of 500 micromol l(-1) CuCl(2). All the above results suggest that, in the amphibian Rana ridibunda heart, p38-MAPK activation by copper has a possible protective role through the small Hsp27.