Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 22(1): 55-71, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33536841

RESUMO

The pollution of environmental systems with heavy metals is becoming a serious problem worldwide. These contaminants are one of the main issues in sludge (which is considered waste) and can even have harmful effects if the sludge is not treated properly. Thus, the development of a novel functional magnetic nanoadsorbent based on a derived lysine is reported here, which can be efficiently applied for metal removal from sludge. Magnetic nanoparticles were coated with silica layer and further modified by covalent bonding of derived lysine. The morphology of the nanomaterial, its nano-size and the silica layer thickness were analyzed by transmission electron microscopy. The successful silanization of the lysine derivative to the silica-coated magnetic nanostructures was investigated by several physicochemical characterization techniques, while the magnetic properties were measured with a vibrating sample magnetometer. The synthesized nanostructures were used as adsorbents for simultaneous removal of most critical heavy metals (Cr, Zn, Cu) from real complex sludge suspensions. The main practical adsorption parameters, pH of the native stabilized sludge, adsorbent amount, time, and adsorbent regeneration were investigated. The results show promising adsorption properties among currently available adsorbents (the total equilibrium adsorption capacity was 24.5 mg/g) from the sludge with satisfactory nanoadsorbent reusability and its rapid removal. The stability of the nanoadsorbent in the sludge, an important but often neglected practical parameter for efficient removal, was verified. This work opens up new possibilities for the development of high-quality magnetic nanoadsorbents for metal pollutants applied in various complicated environmental fields and enables waste recovery.

2.
Sensors (Basel) ; 21(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070032

RESUMO

The rapid growth in wearable technology has recently stimulated the development of conductive textiles for broad application purposes, i.e., wearable electronics, heat generators, sensors, electromagnetic interference (EMI) shielding, optoelectronic and photonics. Textile material, which was always considered just as the interface between the wearer and the environment, now plays a more active role in different sectors, such as sport, healthcare, security, entertainment, military, and technical sectors, etc. This expansion in applied development of e-textiles is governed by a vast amount of research work conducted by increasingly interdisciplinary teams and presented systematic review highlights and assesses, in a comprehensive manner, recent research in the field of conductive textiles and their potential application for wearable electronics (so called e-textiles), as well as development of advanced application techniques to obtain conductivity, with emphasis on metal-containing coatings. Furthermore, an overview of protective compounds was provided, which are suitable for the protection of metallized textile surfaces against corrosion, mechanical forces, abrasion, and other external factors, influencing negatively on the adhesion and durability of the conductive layers during textiles' lifetime (wear and care). The challenges, drawbacks and further opportunities in these fields are also discussed critically.

3.
Int J Mol Sci ; 21(10)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32456103

RESUMO

In this research, antimicrobial polysaccharide chitosan and natural extracts were used as surface coating of a plastic laminate with an integrated whey layer on the inside. The aim was to establish the biodegradable and active concept of packaging laminates. For this purpose, chitosan nanoparticles (CSNPs) with embedded rosemary or cinnamon extracts were synthesised and characterised. Additionally, a whey-based laminate was functionalised: i) chitosan macromolecular solution was applied as first layer and ii) cinnamon or rosemary extracts encapsulated in CSNPs were applied as upper layer (layer wise deposition). Such functionalised whey-based laminate was physicochemically characterized in terms of elemental surface composition, wettability, morphology and oxygen permeability. The antimicrobial activity was tested against Staphylococcus aureus, Escherichia coli, Aspergillus flavus and Penicillium verrucosum. The antioxidant properties were determined using the ABTS assay. It could be shown that after functionalization of the films with the above-mentioned strategy, the wettability was improved. Furthermore, such whey-based laminates still show excellent barrier properties, good antimicrobial activity and a remarkable antioxidative activity. In addition to the improved biodegradability, this type of lamination could also have a positive effect on the shelf-life of products packaged in such structured films.


Assuntos
Antioxidantes/farmacologia , Quitosana/química , Quitosana/farmacologia , Embalagem de Medicamentos/métodos , Nanopartículas/química , Extratos Vegetais/química , Soro do Leite/química , Antibacterianos/química , Anti-Infecciosos/química , Aspergillus flavus/efeitos dos fármacos , Cinnamomum zeylanicum/química , Escherichia coli/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Tamanho da Partícula , Penicillium/efeitos dos fármacos , Permeabilidade , Rosmarinus/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Molhabilidade , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/farmacologia
4.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941018

RESUMO

In this research, antimicrobial polysaccharide chitosan was used as a surface coating for packaging material. The aim of our research was to establish an additive formulation of chitosan and antioxidative plant extracts as dispersion of nanoparticles. Chitosan nanoparticles with embedded thyme, rosemary and cinnamon extracts were synthesized, and characterized for this purpose. Two representative, commercially used foils, polypropylene (PP) and polyethylene (PE), previously activated by UV/ozone to improve coating adhesion, were functionalized using chitosan-extracts nanoparticle dispersions. The foils were coated by two layers. A solution of macromolecular chitosan was applied onto foils as a first layer, followed by the deposition of various extracts embedded into chitosan nanoparticles that were attached as an upper layer. Since active packaging must assure bioactive efficiency at the interface with food, it is extremely important to understand the surface characteristics and phenomena of functionalized foils. The physico-chemical analyses of functionalized foils were thus comprised of surface elemental composition, surface charge, wettability, as well as surface morphology. It has been shown that coatings were applied successfully with an elemental composition, surface charge and morphology that should enable coating stability, homogeneity and consequently provide an active concept of the packaging surface in contact with food. Moreover, the wettability of foils was improved in order to minimize the anti-fogging behavior.


Assuntos
Quitosana/química , Polifenóis/química , Embalagem de Produtos , Molhabilidade , Coloides
5.
Langmuir ; 33(2): 553-560, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27992232

RESUMO

In a proof-of-concept study, we assessed different analytical and spectroscopic parameters for stability screening of differently sized ß-NaYF4:20 mol % Yb3+, 2 mol % Tm3+ upconversion nanoparticles (UCNPs) exemplarily in the bioanalytically relevant buffer phosphate buffered saline (PBS; pH 7.4) at 37 and 50 °C. This included the potentiometric determination of the amount of released fluoride ions, surface analysis with X-ray photoelectron spectroscopy (XPS), and steady-state and time-resolved fluorescence measurements. Based on these results, the luminescence lifetime of the 800 nm upconversion emission was identified as an optimum parameter for stability screening of UCNPs and changes in particle surface chemistry.

6.
Langmuir ; 32(32): 8222-9, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27459496

RESUMO

The dissolution of upconverting AYF4:Yb,Tm (A = Na or K) nanoparticles (UCNPs) in aqueous media was systematically studied. UCNPs with a cubic structure and sizes of between 10 and 33 nm were synthesized solvothermally in ethylene glycol at 200 °C. The UCNPs of both compositions showed an upconversion fluorescence emission characteristic of Tm(3+). The effects of the A cation, the particle size, the temperature, the pH, and the composition of the aqueous medium on the dissolution of the UCNPs were evaluated. The degree of dissolution was determined from the fraction of dissolved fluoride (F(-)) using potentiometry. Unexpectedly, the composition of aqueous media had the most significant effect on the dissolution of the UCNPs. The highest degree of dissolution and rate were measured for the phosphate-buffered saline (PBS), which can be explained by the formation of stable lanthanide compounds with phosphates. The degree of dissolution was much lower in water and in the phthalate buffer, which was attributed to the release of F(-) as a result of the hydrolysis of the UCNPs' surfaces.

7.
Materials (Basel) ; 17(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38894002

RESUMO

This study addresses the structure-property relationship within the green concept of wood fibres with cellulose nanofibre functionalised composites (nW-PPr) containing recycled plastic polyolefins, in particular, polypropylene (PP-r). It focuses especially on the challenges posed by nanoscience in relation to wood fibres (WF) and explores possible changes in the thermal properties, crystallinity, morphology, and mechanical properties. In a two-step methodology, wood fibres (50% wt%) were first functionalised with nanocellulose (nC; 1-9 wt%) and then, secondly, processed into composites using an extrusion process. The surface modification of nC improves its compatibility with the polymer matrix, resulting in improved adhesion, mechanical properties, and inherent biodegradability. The effects of the functionalised WF on the recycled polymer composites were investigated systematically and included analyses of the structure, crystallisation, morphology, and surface properties, as well as thermal and mechanical properties. Using a comprehensive range of techniques, including X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), zeta potential measurements, and dynamic mechanical analysis (DMA), this study aims to unravel the intricate interplay of factors affecting the performance and properties of the developed nanocellulose-functionalised wood fibre-polymer composites. The interfacial adhesion of the nW-PPr polymer composites, crystallisation process, and surface properties was improved due to the formation of an H-bond between the nW coupling agent and neat PP-r. In addition, the role of nW (1.0 wt%) as a nucleating agent resulted in increased crystallinity, or, on the other hand, promoted the interfacial interaction with the highest amount (3.0% wt%, 9.0% wt%) of nW in the PP-r preferentially between the nW and neat PP-r, and also postponed the crystallisation temperature. The changes in the isoelectric point of the nW-PPr polymer composites compared to the neat PP-r polymer indicate the acid content of the polymer composite and, consequently, the final surface morphology. Finally, the higher storage modulus of the composites compared to neat r-PP shows a dependence on improved crystallinity, morphology, and adhesion. It was clear that the results of this study contribute to a better understanding of sustainable materials and can drive the development of environmentally friendly composites applied in packaging.

8.
Int J Biol Macromol ; 270(Pt 2): 132308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740163

RESUMO

UV-ozone activated polypropylene (PP) food films were subjected to a novel bilayer coating process involving primary or quaternary chitosan (CH/QCH) as the first layer and natural extracts from juniper needles (Juniperus oxycedrus; JUN) or blackberry leaves (Rubus fruticosus; BBL) as the second layer. This innovative approach aims to redefine active packaging (AP) development. Through a detailed analysis by surface characterization and bioactivity assessments (i.e., antioxidant and antimicrobial functionalities), we evaluated different coating combinations. Furthermore, we investigated the stability and barrier characteristics inherent in these coatings. The confirmed deposition, coupled with a comprehensive characterization of their composition and morphology, underscored the efficacy of the coatings. Our investigation included wettability assessment via contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), which revealed substantial enhancements in surface concentrations of elements and functional groups of CH, QCH, JUN, and BBL. Scanning electron microscopy (SEM) unveiled the coatings' heterogeneity, while time-of-flight secondary ion mass spectrometry (ToF-SIMS) and CA profiling showed moderately compact bilayers on PP, providing active species on the hydrophilic surface, respectively. The coatings significantly reduced the oxygen permeability. Additionally, single-layer depositions of CH and QCH remained below the overall migration limit (OML). Remarkably, the coatings exhibited robust antioxidative properties due to plant extracts and exceptional antimicrobial activity against S. aureus, attributed to QCH. These findings underscore the pivotal role of film surface properties in governing bioactive characteristics and offer a promising pathway for enhancing food packaging functionality.


Assuntos
Quitosana , Embalagem de Alimentos , Extratos Vegetais , Polipropilenos , Quitosana/química , Quitosana/farmacologia , Polipropilenos/química , Embalagem de Alimentos/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Juniperus/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Rubus/química , Propriedades de Superfície , Molhabilidade
9.
J Funct Biomater ; 14(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37103322

RESUMO

High molecular weight chitosan (HMWCh), quaternised cellulose nanofibrils (qCNF), and their mixture showed antiviral potential in liquid phase, while this effect decreased when applied to facial masks, as studied in our recent work. To gain more insight into material antiviral activity, spin-coated thin films were prepared from each suspension (HMWCh, qCNF) and their mixture with a 1:1 ratio. To understand their mechanism of action, the interactions between these model films with various polar and nonpolar liquids and bacteriophage phi6 (in liquid phase) as a viral surrogate were studied. Surface free energy (SFE) estimates were used as a tool to evaluate the potential adhesion of different polar liquid phases to these films by contact angle measurements (CA) using the sessile drop method. The Fowkes, Owens-Wendt-Rabel-Kealble (OWRK), Wu, and van Oss-Chaudhury-Good (vOGC) mathematical models were used to estimate surface free energy and its polar and dispersive contributions, as well as the Lewis acid and Lewis base contributions. In addition, the surface tension SFT of liquids was also determined. The adhesion and cohesion forces in wetting processes were also observed. The estimated SFE of spin-coated films varied between mathematical models (26-31 mJ/m2) depending on the polarity of the solvents tested, but the correlation between models clearly indicated a significant dominance of the dispersion components that hinder wettability. The poor wettability was also supported by the fact that the cohesive forces in the liquid phase were stronger than the adhesion to the contact surface. In addition, the dispersive (hydrophobic) component dominated in the phi6 dispersion, and since this was also the case in the spin-coated films, it can be assumed that weak physical van der Waals forces (dispersion forces) and hydrophobic interactions occurred between phi6 and the polysaccharide films, resulting in the virus not being in sufficient contact with the tested material during antiviral testing of the material to be inactivated by the active coatings of the polysaccharides used. Regarding the contact killing mechanism, this is a disadvantage that can be overcome by changing the previous material surface (activation). In this way, HMWCh, qCNF, and their mixture can attach to the material surface with better adhesion, thickness, and different shape and orientation, resulting in a more dominant polar fraction of SFE and thus enabling the interactions within the polar part of phi6 dispersion.

10.
Int J Biol Macromol ; 236: 123951, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898451

RESUMO

Masks proved to be necessary protective measure during the COVID-19 pandemic, but they provided a physical barrier rather than inactivating viruses, increasing the risk of cross-infection. In this study, high-molecular weight chitosan and cationised cellulose nanofibrils were screen-printed individually or as a mixture onto the inner surface of the first polypropylene (PP) layer. First, biopolymers were evaluated by various physicochemical methods for their suitability for screen-printing and antiviral activity. Second, the effect of the coatings was evaluated by analysing the morphology, surface chemistry, charge of the modified PP layer, air permeability, water-vapour retention, add-on, contact angle, antiviral activity against the model virus phi6 and cytotoxicity. Finally, the functional PP layers were integrated into face masks, and resulting masks were tested for wettability, air permeability, and viral filtration efficiency (VFE). Air permeability was reduced for modified PP layers (43 % reduction for kat-CNF) and face masks (52 % reduction of kat-CNF layer). The antiviral potential of the modified PP layers against phi6 showed inhibition of 0.08 to 0.97 log (pH 7.5) and cytotoxicity assay showed cell viability above 70 %. VFE of the masks remained the same (~99.9 %), even after applying the biopolymers, confirming that these masks provided high level of protection against viruses.


Assuntos
COVID-19 , Quitosana , Humanos , COVID-19/prevenção & controle , Antivirais/farmacologia , Pandemias/prevenção & controle , Celulose/farmacologia , Máscaras
11.
Polymers (Basel) ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36365707

RESUMO

The presented review summarizes recent studies in the field of electro conductive textiles as an essential part of lightweight and flexible textile-based electronics (so called e-textiles), with the main focus on a relatively simple and low-cost dip-coating technique that can easily be integrated into an existing textile finishing plant. Herein, numerous electro conductive compounds are discussed, including intrinsically conductive polymers, carbon-based materials, metal, and metal-based nanomaterials, as well as their combinations, with their advantages and drawbacks in contributing to the sectors of healthcare, military, security, fitness, entertainment, environmental, and fashion, for applications such as energy harvesting, energy storage, real-time health and human motion monitoring, personal thermal management, Electromagnetic Interference (EMI) shielding, wireless communication, light emitting, tracking, etc. The greatest challenge is related to the wash and wear durability of the conductive compounds and their unreduced performance during the textiles' lifetimes, which includes the action of water, high temperature, detergents, mechanical forces, repeated bending, rubbing, sweat, etc. Besides electrical conductivity, the applied compounds also influence the physical-mechanical, optical, morphological, and comfort properties of textiles, depending on the type and concentration of the compound, the number of applied layers, the process parameters, as well as additional protective coatings. Finally, the sustainability and end-of-life of e-textiles are critically discussed in terms of the circular economy and eco-design, since these aspects are mainly neglected, although e-textile' waste could become a huge problem in the future when their mass production starts.

12.
Polymers (Basel) ; 14(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015613

RESUMO

The outbreak of the worrisome coronavirus disease in 2019 has caused great concern among the global public, especially regarding the need for personal protective equipment with applied antiviral agents to reduce the spread and transmission of the virus. Thus, in our research, chitosan-based bioactive polymers as potential antiviral agents were first evaluated as colloidal macromolecular solutions by elemental analysis and charge. Three different types of low and high molecular weight chitosan (LMW Ch, HMW Ch) and a LMW Ch derivative, i.e., quaternary chitosan (quart-LMW Ch), were used. To explore their antiviral activity for subsequent use in the form of coatings, the macromolecular Chs dispersions were incubated with the model virus phi6 (surrogate for SARS-CoV-2), and the success of virus inactivation was determined. Inactivation of phi6 with some chitosan-based compounds was very successful (>6 log), and the mechanisms behind this were explored. The changes in viral morphology after incubation were observed and the changes in infrared bands position were determined. In addition, dynamic and electrophoretic light scattering studies were performed to better understand the interaction between Chs and phi6. The results allowed us to better understand the antiviral mode of action of Chs agents as a function of their physicochemical properties.

13.
J Funct Biomater ; 13(4)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36412869

RESUMO

Due to the growing problem of food and packaging waste, environmental awareness, and customer requirements for food safety, there is a great need for the development of innovative and functional packaging. Among these developments, the concept of active packaging is at the forefront. The shortcoming in this area is that there is still a lack of multifunctional concepts, as well as green approaches. Therefore, this work focuses on the development of active chemical substances of natural origin applied as a coating on polylactic acid (PLA) films. Biopolymer chitosan and plant extracts rich in phenolic compounds (blackberry leaves-Rubus fruticosus, needles of prickly juniper-Juniperus oxycedrus) obtained from plant biomass from Southeastern Europe were selected in this work. In order to increase the effectiveness of individual substances and to introduce multifunctionality, they were combined in the form of different colloidal structural formulations. The plant extracts were embedded in chitosan biopolymer particles and dispersed in a macromolecular chitosan solution. In addition, a two-layer coating, the first of a macromolecular chitosan solution, and the second of a dispersion of the embedded extracts in chitosan particles, was applied to the PLA films as a novel approach. The success of the coatings was monitored by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and the wettability was evaluated by contact angle measurements. Scanning electron microscopy SEM tracked the morphology and homogeneity of the coating. Antioxidation was studied by DPPH and ABTS spectrophotometric tests, and microbiological analysis of the films was performed according to the ISO 22196 Standard. Desorption of the coating from the PLA was monitored by reducing the elemental composition of the films themselves. The successful functionalization of PLA was demonstrated, while the XPS and ATR-FTIR analyses clearly showed the peaks of elemental composition of the extracts and chitosan on the PLA surface. Moreover, in all cases, the contact angle of the bilayer coatings decreased by more than 35-60% and contributed to the anti-fogging properties. The desorption experiments, due to decrease in the concentration of the specific typical element (nitrogen), indicated some migration of substances from the PLA's surface. The newly developed films also exhibited antioxidant properties, with antioxidant ABTS efficiencies ranging from 83.5 to 100% and a quite high inhibition of Gram-positive Staphylococcus aureus bacteria, averaging over 95%. The current functionalization of PLA simultaneously confers antifogging, antioxidant, and antimicrobial properties and drives the development of a biodegradable and environmentally friendly composite material using green chemistry principles.

14.
ACS Appl Mater Interfaces ; 13(20): 23352-23368, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33998809

RESUMO

Medical implant-associated infections resulting from biofilm formation triggered by unspecific protein adsorption are the prevailing cause of implant failure. However, implant surfaces rendered with multifunctional bioactive nanocoatings offer a promising alternative to prevent the initial attachment of bacteria and effectively interrupt biofilm formation. The need to research and develop novel and stable bioactive nanocoatings for medical implants and a comprehensive understanding of their properties in contact with the complex biological environment are crucial. In this study, we developed an aqueous stable and crosslinker-free polyelectrolyte-surfactant complex (PESC) composed of a renewable cationic polysaccharide, chitosan, a lysine-based anionic surfactant (77KS), and an amphoteric antibiotic, amoxicillin, which is widely used to treat a number of infections caused by bacteria. We successfully introduced the PESC as bioactive functional nanolayers on the "model" and "real" polydimethylsiloxane (PDMS) surfaces under dynamic and ambient conditions. Besides their high stability and improved wettability, these uniformly deposited nanolayers (thickness: 44-61 nm) with mixed charges exhibited strong repulsion toward three model blood proteins (serum albumin, fibrinogen, and γ-globulin) and their competitive interactions in the mixture in real-time, as demonstrated using a quartz crystal microbalance with dissipation (QCM-D). The functional nanolayers with a maximum negative zeta potential (ζ: -19 to -30 mV at pH 7.4), water content (1628-1810 ng cm-2), and hydration (low viscosity and elastic shear modulus) correlated with the mass, conformation, and interaction nature of proteins. In vitro antimicrobial activity testing under dynamic conditions showed that the charged nanolayers actively inhibited the growth of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to unmodified PDMS. Given the ease of fabrication of multifunctional and charged biobased coatings with simultaneous protein-repellent and antimicrobial activities, the limitations of individual approaches could be overcome leading to a better and advanced design of various medical devices (e.g., catheters, prosthetics, and stents).


Assuntos
Antibacterianos , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Próteses e Implantes/microbiologia , Tensoativos , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Quitosana/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Lisina/química , Lisina/farmacologia , Nanomedicina , Nanoestruturas/química , Proteínas/química , Silício , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Tensoativos/química , Tensoativos/farmacologia
15.
RSC Adv ; 10(12): 6777-6789, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35493873

RESUMO

The analysis of the surface zeta potential (SZP) opens up new possibilities in the characterization of various materials used for scientific or industrial applications. It provides at the same time insight into the material surface chemistry and elucidates the interactions with charged species in the aqueous test solution. For this purpose, an accurate, reliable and repeatable analysis of the SZP is the key factor. This work focuses on a detailed and systematic comparison of two electrokinetic techniques, i.e. the mapping of the electro-osmotic flow (EOF) and the measurement of the streaming potential (SP), for the surface zeta potential (SZP) determination of several materials with varying properties. Both techniques have advantages as well as drawbacks. The applicability of latex polymer material and inorganic tracer particles at varying ionic strength, the interaction between oppositely charged tracer particles and solid surfaces, the assessment of the pH dependence of the SZP and the isoelectric point (IEP), and the effects of sample porosity and conductance have been investigated. Although in some cases the EOF method gives a SZP similar to the streaming potential measurement, especially when the tracer particle exhibits the same charge as the solid surface, it was revealed that reliable results were only obtained with the streaming potential and streaming current method. Several obstacles such as elevated conductivity at higher ionic strength, the applied voltage for the EM measurement, and the nature of tracer particles lower the accuracy and reliability of the SZP determined by the EOF method. It was shown that the EOF method is not applicable to oppositely charged surface and tracer particles and also limited to low salinity conditions especially when using polymeric tracer particles. Although the EOF method does not require the formation of a capillary flow channel, it disables a non-destructive SZP of fragile or valuable samples, such as QCM-D sensors, in comparison to the SP approach.

16.
Nanomaterials (Basel) ; 9(2)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736282

RESUMO

Due to the extreme rise of sludge pollution with heavy metals (e.g. copper), the options for its disposal or treatment are decreasing. On the contrary, properly heavy metal-cleaned sludge can be used as an alternative sustainable energy and agriculture source. The aim of this study was to develop a novel nanoadsorbent, based on irreversibly linked amino-rich polymer onto previously silica-coated magnetic nanoparticles (MNPs) that can be applied efficiently for metal removal. MNPs were coated uniformly by 3 nm thick silica layer (core-shell structure), and were additionally modified with systematic covalent attachment of derived branched polyethyleneimine (bPEI). The formed structure of synthesized MNPs composite was confirmed with several analytical techniques. Importantly, nanoadsorbents exhibit high density of chelating amino groups and large magnetic force for easier separation. The importance of introduced bPEI, effect of pH, initial heavy metal concentration onto copper uptake efficiency and, further, nanoadsorbent regeneration, were studied and explained in detail. The adsorption isotherm was well fitted with Langmuir model, and the maximum adsorption capacity was shown to be 143 mg·g¹ for Cu2+. The reusability and superior properties of silica-coated MNPs functionalized with derived-bPEI for copper adsorption underlie its potential for the removal application from heavy metals contaminated sludge.

17.
Materials (Basel) ; 12(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871195

RESUMO

Silicones are widely used medical materials that are also applied for tympanostomy tubes with a trending goal to functionalise the surface of the latter to enhance the healing of ear inflammations and other ear diseases, where such medical care is required. This study focuses on silicone surface treatment with various antimicrobial coatings. Polysaccharide coatings in the form of chitosan nanoparticles alone, or with an embedded drug mixture composed of amoxicillin/clavulanic acid (co-amoxiclav) were prepared and applied onto silicone material. Plasma activation was also used as a pre-treatment for activation of the material's surface for better adhesion of the coatings. The size of the nanoparticles was measured using the DLS method (Dynamic Light Scattering), stability of the dispersion was determined with zeta potential measurements, whilst the physicochemical properties of functionalised silicone materials were examined using the UV-Vis method (Ultraviolet-Visible Spectroscopy), SEM (Scanning Electron Microscopy), XPS (X-Ray Photoelectron Spectroscopy). Moreover, in vitro drug release testing was used to follow the desorption kinetics and antimicrobial properties were tested by a bacterial cell count reduction assay using the standard gram-positive bacteria Staphylococcus aureus. The results show silicone materials as suitable materials for tympanostomy tubes, with the coating developed in this study showing excellent antimicrobial and biofilm inhibition properties. This implies a potential for better healing of ear inflammation, making the newly developed approach for the preparation of functionalised tympanostomy tubes promising for further testing towards clinical applications.

18.
ACS Biomater Sci Eng ; 5(11): 5825-5832, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405673

RESUMO

Engineering functional biomaterials surfaces that resist biofilm formation triggered by unspecific protein adsorption is a key challenge, and these biosurfaces hold a huge potential in implant-associated infection. Herein, we report a water-based facile approach to install carboxylated-hyaluronic acid and sulfated-fucoidan on cationically tethered polydimethylsiloxane (PDMS) implant. We showed that these hydrophilic, charged, polysaccharide-based biosurfaces/biocoatings provide long-term stability, no adsorption of proteins (albumin and fibrinogen), similar to zwitterionic polymers, and enhanced resistance to plasma deposition and growth of Staphylococcus aureus pathogen. These findings shall pave the way in developing novel biocoatings, thereby broadening the applicability of PDMS-based implants in complex biological applications.

19.
Materials (Basel) ; 12(13)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266201

RESUMO

The present paper reports a novel method to improve the properties of polyethylene (PE) and polypropylene (PP) polymer foils suitable for applications in food packaging. It relates to the adsorption of chitosan-colloidal systems onto untreated and oxygen plasma-treated foil surfaces. It is hypothesized that the first coated layer of chitosan macromolecular solution enables excellent antibacterial properties, while the second (uppermost) layer contains a network of polyphenol resveratrol, embedded into chitosan nanoparticles, which enables antioxidant and antimicrobial properties simultaneously. X-ray photon spectroscopy (XPS) and infrared spectroscopy (FTIR) showed successful binding of both coatings onto foils as confirmed by gravimetric method. In addition, both attached layers (chitosan macromolecular solution and dispersion of chitosan nanoparticles with incorporated resveratrol) onto foils reduced oxygen permeability and wetting contact angle of foils; the latter indicates good anti-fog foil properties. Reduction of both oxygen permeability and wetting contact angle is more pronounced when foils are previously activated by O2 plasma. Moreover, oxygen plasma treatment improves stability and adhesion of chitosan structured adsorbates onto PP and PE foils. Foils also exhibit over 90% reduction of Staphylococcus aureus and over 77% reduction of Escherichia coli as compared to untreated foils and increase antioxidant activity for over a factor of 10. The present method may be useful in different packaging applications such as food (meat, vegetables, dairy, and bakery products) and pharmaceutical packaging, where such properties of foils are desired.

20.
Dalton Trans ; 46(21): 6975-6984, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28513723

RESUMO

Upconverting nanoparticles (UCNPs) of ß-NaYF4, co-doped with Yb3+ and Tm3+ and 21-36 nm large, were synthesized using a modified thermal decomposition method. The as-synthesized UCNPs were coated with oleic acid and dispersed in nonpolar media. Their morphology, size and crystal structure were analysed with transmission electron microscopy and X-ray diffraction. The UCNPs showed a fluorescence emission spectrum characteristic of Tm3+. Their dissolution in water (pH ∼ 4-5) and phosphate buffered saline (PBS, pH = 7.4) was determined from the fraction of dissolved fluoride ions using a fluoride-ion-selective electrode. The dissolution of bare UCNPs was much more prominent in PBS than in water. Two amphiphilic coatings, poly(maleic anhydride-alt-1-octadecene)-bis(hexamethylene)triamine (PMAO-BHMT) and d-α-tocopheryl polyethylene glycol succinate (TPGS) were tested for their effects on the dissolution of the UCNPs. The coatings were formed directly on the as-synthesized UCNPs as was confirmed with electrokinetic measurements, infrared spectroscopy and thermogravimetric analyses. Both coatings enabled the dispersion of UCNPs in water, and improved the fluorescence emission intensity with respect to the bare UCNPs. However, only the PMAO-BHMT coating provided an effective protection against the dissolution of the UCNPs and long-term colloidal stability in PBS, and did not show cytotoxicity in EAhy926 endothelial cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA