Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Microbiol ; 13(1): 62-80, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20812995

RESUMO

Camalexin, the characteristic phytoalexin of Arabidopsis thaliana, inhibits growth of the fungal necrotroph Alternaria brassicicola. This plant metabolite probably exerts its antifungal toxicity by causing cell membrane damage. Here we observed that activation of a cellular response to this damage requires cell wall integrity (CWI) and the high osmolarity glycerol (HOG) pathways. Camalexin was found to activate both AbHog1 and AbSlt2 MAP kinases, and activation of the latter was abrogated in a AbHog1 deficient strain. Mutant strains lacking functional MAP kinases showed hypersensitivity to camalexin and brassinin, a structurally related phytoalexin produced by several cultivated Brassica species. Enhanced susceptibility to the membrane permeabilization activity of camalexin was observed for MAP kinase deficient mutants. These results suggest that the two signalling pathways have a pivotal role in regulating a cellular compensatory response to preserve cell integrity during exposure to camalexin. AbHog1 and AbSlt2 deficient mutants had reduced virulence on host plants that may, at least for the latter mutants, partially result from their inability to cope with defence metabolites such as indolic phytoalexins. This constitutes the first evidence that a phytoalexin activates fungal MAP kinases and that outputs of activated cascades contribute to protecting the fungus against antimicrobial plant metabolites.


Assuntos
Alternaria/efeitos dos fármacos , Alternaria/fisiologia , Antifúngicos/toxicidade , Parede Celular/fisiologia , Glicerol/metabolismo , Sesquiterpenos/toxicidade , Estresse Fisiológico , Adaptação Fisiológica , Alternaria/crescimento & desenvolvimento , Arabidopsis/química , Brassica/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Biológicos , Concentração Osmolar , Filogenia , Homologia de Sequência de Aminoácidos , Virulência , Fitoalexinas
2.
PLoS One ; 8(10): e75143, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098369

RESUMO

In this study, the roles of fungal dehydrin-like proteins in pathogenicity and protection against environmental stresses were investigated in the necrotrophic seed-borne fungus Alternaria brassicicola. Three proteins (called AbDhn1, AbDhn2 and AbDhn3), harbouring the asparagine-proline-arginine (DPR) signature pattern and sharing the characteristic features of fungal dehydrin-like proteins, were identified in the A. brassicicola genome. The expression of these genes was induced in response to various stresses and found to be regulated by the AbHog1 mitogen-activated protein kinase (MAPK) pathway. A knock-out approach showed that dehydrin-like proteins have an impact mainly on oxidative stress tolerance and on conidial survival upon exposure to high and freezing temperatures. The subcellular localization revealed that AbDhn1 and AbDhn2 were associated with peroxisomes, which is consistent with a possible perturbation of protective mechanisms to counteract oxidative stress and maintain the redox balance in AbDhn mutants. Finally, we show that the double deletion mutant ΔΔabdhn1-abdhn2 was highly compromised in its pathogenicity. By comparison to the wild-type, this mutant exhibited lower aggressiveness on B. oleracea leaves and a reduced capacity to be transmitted to Arabidopsis seeds via siliques. The double mutant was also affected with respect to conidiation, another crucial step in the epidemiology of the disease.


Assuntos
Alternaria/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Plantas/microbiologia , Estresse Fisiológico , Alternaria/citologia , Alternaria/efeitos dos fármacos , Alternaria/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Congelamento , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genoma Fúngico/genética , Dados de Sequência Molecular , Mutação , Estresse Oxidativo/efeitos dos fármacos , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , RNA Mensageiro/genética , Sais/farmacologia , Sementes/microbiologia , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
3.
Plant Methods ; 8(1): 16, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22571391

RESUMO

BACKGROUND: Seed transmission constitutes a major component of the parasitic cycle for several fungal pathogens. However, very little is known concerning fungal or plant genetic factors that impact seed transmission and mechanisms underlying this key biological trait have yet to be clarified. Such lack of available data could be probably explained by the absence of suitable model pathosystem to study plant-fungus interactions during the plant reproductive phase. RESULTS: Here we report on setting up a new pathosystem that could facilitate the study of fungal seed transmission. Reproductive organs of Arabidopsis thaliana were inoculated with Alternaria brassicicola conidia. Parameters (floral vs fruit route, seed collection date, plant and silique developmental stages) that could influence the seed transmission efficiency were tested to define optimal seed infection conditions. Microscopic observations revealed that the fungus penetrates siliques through cellular junctions, replum and stomata, and into seed coats either directly or through cracks. The ability of the osmosensitive fungal mutant nik1Δ3 to transmit to A. thaliana seeds was analyzed. A significant decrease in seed transmission rate was observed compared to the wild-type parental strain, confirming that a functional osmoregulation pathway is required for efficient seed transmission of the fungus. Similarly, to test the role of flavonoids in seed coat protection against pathogens, a transparent testa Arabidopsis mutant (tt4-1) not producing any flavonoid was used as host plant. Unexpectedly, tt4-1 seeds were infected to a significantly lower extent than wild-type seeds, possibly due to over-accumulation of other antimicrobial metabolites. CONCLUSIONS: The Arabidopsis thaliana-Alternaria brassicicola pathosystem, that have been widely used to study plant-pathogen interactions during the vegetative phase, also proved to constitute a suitable model pathosystem for detailed analysis of plant-pathogen interactions during the reproductive phase. We demonstrated that it provides an excellent system for investigating the impact of different fungal or plant mutations on the seed transmission process and therefore paves the way towards future high-throughput screening of both Arabidopsis and fungal mutant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA