RESUMO
The ability to tolerate temperature stress is an important component of adult fitness. In holometabolous insects like Drosophila melanogaster, adult stress resistance can be affected by growth conditions experienced during the larval stages. Although evolution under crowded larval conditions is known to lead to the correlated evolution of many adult traits, its consequences on adult heat stress tolerance have not been investigated. Therefore, in the present study, we assessed the adult heat stress tolerance in populations of D. melanogaster adapted to a stressful larval crowding environment. We used replicate populations of D. melanogaster, selected for adaptation to larval crowding stress (MCUs), for more than 230 generations, and their respective controls (MBs). Larvae from selected and control populations were grown under crowded and uncrowded conditions, and their adult heat shock resistance at two different temperatures was measured. Further, we compared Hsp70 expression in crowded and uncrowded larvae of both populations and also measured the Hsp70 expression after a mild heat treatment in adults of selected and control populations. Our results showed that adaptation to larval crowding leads to the evolution of Hsp70 gene expression in larval stages and improves adult heat stress tolerance ability in males, but not in females.
Assuntos
Drosophila melanogaster , Seleção Genética , Animais , Evolução Biológica , Drosophila melanogaster/genética , Feminino , Resposta ao Choque Térmico/genética , Larva/genética , MasculinoRESUMO
In many insects, the larval environment is confined to the egg-laying site, which often leads to crowded larval conditions, exposing the developing larvae to poor resource availability and toxic metabolic wastes. Larval crowding imposes two opposing selection pressures. On one hand, due to poor nutritional resources during developmental stages, adults from the crowded larval environment have reduced investment in reproductive tissues. On the other hand, a crowded larval environment acts as a cue for future reproductive competition inducing increased investment in reproductive tissues. Both these selection pressures are likely affected by the level of crowding. The evolutionary consequence of adaptation to larval crowding environment on adult reproductive investment is bound to be a result of the interaction of these two opposing forces. In this study, we used experimentally evolved populations of Drosophila melanogaster adapted to larval crowding to investigate the effect of adaptation to larval crowding on investment in reproductive organs (testes and accessory glands) of males. Our results show that there is a strong effect of larval developmental environment on absolute sizes of testes and accessory glands. However, there was no effect of the developmental environment when testis size was scaled by body size. We also found that flies from crowded cultures had smaller accessory gland sizes relative to body size. Moreover, the sizes of the reproductive organs were not affected by the selection histories of the populations. This study highlights that adaptation to two extremely different developmental environments does not affect the patterns of reproductive investment. We discuss the possibility that differential investment in reproductive tissues could be influenced by the mating dynamics and/or investment in larval survival traits, rather than just the developmental environment of the populations.
RESUMO
The environment experienced by individuals during their juvenile stages has an impact on their adult stages. In holometabolous insects like Drosophila melanogaster, most of the resource acquisition for adult stages happens during the larval stages. Larval-crowding is a stressful environment, which exposes the larvae to scarcity of food and accumulation of toxic waste. Since adult traits are contingent upon larval stages, in larval-crowding like conditions, adult traits are prone to get affected. While the effect of resource limited, poor-developmental environment on adult immune response has been widely studied, the effect of adaptation to resource-limited developmental environment has not been studied, therefore in this study we assayed the evolution of ability to survive infection in adult stages as a correlated response to adaptation to larval crowding environments. Using four populations of Drosophila melanogaster adapted to larval crowding for 240 generations and their respective control populations, we show that populations adapted to larval crowding show an improved and evolved post-infection survivorship against a gram-negative bacteria Pseudomonas entomophila. Whereas, against a gram-positive bacteria Enterococcus faecalis, no difference in post-infection survivorship was observed across control and selected populations. In this study, we report the co-related evolution of pathogen-specific increased survivorship post-infection in populations of Drosophila melanogaster as a result of adaptation to larval crowding environment.