Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Brain ; 147(3): 1043-1056, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804316

RESUMO

AFG3L2 is a mitochondrial protease exerting protein quality control in the inner mitochondrial membrane. Heterozygous AFG3L2 mutations cause spinocerebellar ataxia type 28 (SCA28) or dominant optic atrophy type 12 (DOA12), while biallelic AFG3L2 mutations result in the rare and severe spastic ataxia type 5 (SPAX5). The clinical spectrum of SPAX5 includes childhood-onset cerebellar ataxia, spasticity, dystonia and myoclonic epilepsy. We previously reported that the absence or mutation of AFG3L2 leads to the accumulation of mitochondria-encoded proteins, causing the overactivation of the stress-sensitive protease OMA1, which over-processes OPA1, leading to mitochondrial fragmentation. Recently, OMA1 has been identified as the pivotal player communicating mitochondrial stress to the cytosol via a pathway involving the inner mitochondrial membrane protein DELE1 and the cytosolic kinase HRI, thus eliciting the integrated stress response. In general, the integrated stress response reduces global protein synthesis and drives the expression of cytoprotective genes that allow cells to endure proteotoxic stress. However, the relevance of the OMA1-DELE1-HRI axis in vivo, and especially in a human CNS disease context, has been poorly documented thus far. In this work, we demonstrated that mitochondrial proteotoxicity in the absence/mutation of AFG3L2 activates the OMA1-DELE1-HRI pathway eliciting the integrated stress response. We found enhanced OMA1-dependent processing of DELE1 upon depletion of AFG3L2. Also, in both skin fibroblasts from SPAX5 patients (including a novel case) and in the cerebellum of Afg3l2-/- mice we detected increased phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α), increased levels of ATF4 and strong upregulation of its downstream targets (Chop, Chac1, Ppp1r15a and Ffg21). Silencing of DELE1 or HRI in SPAX5 fibroblasts (where OMA1 is overactivated at basal state) reduces eIF2α phosphorylation and affects cell growth. In agreement, pharmacological potentiation of integrated stress response via Sephin-1, a drug that selectively inhibits the stress-induced eIF2alpha phosphatase GADD34 (encoded by Ppp1r15a), improved cell growth of SPAX5 fibroblasts and cell survival and dendritic arborization ex vivo in primary Afg3l2-/- Purkinje neurons. Notably, Sephin-1 treatment in vivo extended the lifespan of Afg3l2-/- mice, improved Purkinje neuron morphology, mitochondrial ultrastructure and respiratory capacity. These data indicate that activation of the OMA1-DELE1-HRI pathway is protective in the context of SPAX5. Pharmacological tuning of the integrated stress response may represent a future therapeutic strategy for SPAX5 and other cerebellar ataxias caused by impaired mitochondrial proteostasis.


Assuntos
Deficiência Intelectual , Atrofia Óptica , Ataxias Espinocerebelares , Humanos , Animais , Camundongos , Criança , Ataxias Espinocerebelares/genética , Espasticidade Muscular , Peptídeo Hidrolases , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Proteínas Mitocondriais , Metaloproteases
2.
Traffic ; 22(4): 98-110, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33314523

RESUMO

Extracellular vesicles (EVs), a broad term for the lipid microparticles known as microvesicles and exosomes, are discharged by cells into their surrounding space. Microvesicles are discharged upon outward plasma membrane budding, while exosomes are secreted after multivesicular body (MVB) fusion with the plasma membrane. The majority of information regarding EV biology comes from studies performed in non-polarized cells. Here we characterize EV release in polarized cells. We found a substantial asymmetry in the number and composition of EVs produced and released from the apical membrane of epithelial cells as compared to the basolateral membrane. We showed that the quantitative difference is related to the polarized distribution of two phosphoinositide species between the two cell surfaces and that the peculiar biochemical composition of resultant EVs reflects their site of origin. In particular, apical and basolateral exosomes may derive from distinct classes of MVBs originating from and fusing with the same plasma membrane. We identify VAMP8/Endobrevin as a regulator of the basolateral release of exosomes, whereas the mechanism responsible for apical EV release requires further study.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Polaridade Celular , Corpos Multivesiculares
3.
J Neurosci ; 42(12): 2433-2447, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35110388

RESUMO

We previously reported that a-disintegrin and metalloproteinase (ADAM)17 is a key protease regulating myelin formation. We now describe a role for ADAM17 during the Wallerian degeneration (WD) process. Unexpectedly, we observed that glial ADAM17, by regulating p75NTR processing, cell autonomously promotes remyelination, while neuronal ADAM17 is dispensable. Accordingly, p75NTR abnormally accumulates specifically when ADAM17 is maximally expressed leading to a downregulation of tissue plasminogen activator (tPA) expression, excessive fibrin accumulation over time, and delayed remyelination. Mutant mice also present impaired macrophage recruitment and defective nerve conduction velocity (NCV). Thus, ADAM17 expressed in Schwann cells, controls the whole WD process, and its absence hampers effective nerve repair. Collectively, we describe a previously uncharacterized role for glial ADAM17 during nerve regeneration. Based on the results of our study, we posit that, unlike development, glial ADAM17 promotes remyelination through the regulation of p75NTR-mediated fibrinolysis.SIGNIFICANCE STATEMENT The α-secretase a-disintegrin and metalloproteinase (ADAM)17, although relevant for developmental PNS myelination, has never been investigated in Wallerian degeneration (WD). We now unravel a new mechanism of action for this protease and show that ADAM17 cleaves p75NTR, regulates fibrin clearance, and eventually fine-tunes remyelination. The results presented in this study provide important insights into the complex regulation of remyelination following nerve injury, identifying in ADAM17 and p75NTR a new signaling axis implicated in these events. Modulation of this pathway could have important implications in promoting nerve remyelination, an often-inefficient process, with the aim of restoring a functional axo-glial unit.


Assuntos
Proteína ADAM17 , Receptor de Fator de Crescimento Neural , Remielinização , Proteína ADAM17/metabolismo , Animais , Desintegrinas , Fibrina , Fibrinólise , Camundongos , Receptor de Fator de Crescimento Neural/metabolismo , Ativador de Plasminogênio Tecidual , Degeneração Walleriana
4.
Development ; 147(22)2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33046507

RESUMO

The choroid plexus (ChP) is a secretory tissue that produces cerebrospinal fluid (CSF) secreted into the ventricular system. It is a monolayer of secretory, multiciliated epithelial cells derived from neuroepithelial progenitors and overlying a stroma of mesenchymal cells of mesodermal origin. Zfp423, which encodes a Kruppel-type zinc-finger transcription factor essential for cerebellar development and mutated in rare cases of cerebellar vermis hypoplasia/Joubert syndrome and other ciliopathies, is expressed in the hindbrain roof plate, from which the IV ventricle ChP arises, and, later, in mesenchymal cells, which give rise to the stroma and leptomeninges. Mouse Zfp423 mutants display a marked reduction of the hindbrain ChP (hChP), which: (1) fails to express established markers of its secretory function and genes implicated in its development and maintenance (Lmx1a and Otx2); (2) shows a perturbed expression of signaling pathways previously unexplored in hChP patterning (Wnt3); and (3) displays a lack of multiciliated epithelial cells and a profound dysregulation of master genes of multiciliogenesis (Gmnc). Our results propose that Zfp423 is a master gene and one of the earliest known determinants of hChP development.


Assuntos
Plexo Corióideo/embriologia , Proteínas de Ligação a DNA/metabolismo , Rombencéfalo/embriologia , Fatores de Transcrição/metabolismo , Animais , Plexo Corióideo/citologia , Proteínas de Ligação a DNA/genética , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Mutantes , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Rombencéfalo/citologia , Fatores de Transcrição/genética , Proteína Wnt3/genética , Proteína Wnt3/metabolismo
5.
J Virol ; 96(19): e0112222, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36121298

RESUMO

Zika virus (ZIKV) is an arbovirus member of the Flaviviridae family that causes severe congenital brain anomalies in infected fetuses. The key target cells of ZIKV infection, human neural progenitor cells (hNPCs), are highly permissive to infection that causes the inhibition of cell proliferation and induces cell death. We have previously shown that pharmaceutical-grade heparin inhibits virus-induced cell death with negligible effects on in vitro virus replication in ZIKV-infected hNPCs at the "high" multiplicity of infection (MOI) of 1. Here, we show that heparin inhibits formation of ZIKV-induced intracellular vacuoles, a signature of paraptosis, and inhibits necrosis and apoptosis of hNPCs grown as neurospheres (NS). To test whether heparin preserved the differentiation of ZIKV-infected hNPCs into neuroglial cells, hNPCs were infected at the MOI of 0.001. In this experimental condition, heparin inhibited ZIKV replication by ca. 2 log10, mostly interfering with virion attachment, while maintaining its protective effect against ZIKV-induced cytopathicity. Heparin preserved differentiation into neuroglial cells of hNPCs that were obtained from either human-induced pluripotent stem cells (hiPSC) or by fetal tissue. Quite surprisingly, multiple additions of heparin to hNPCs enabled prolonged virus replication while preventing virus-induced cytopathicity. Collectively, these results highlight the potential neuroprotective effect of heparin that could serve as a lead compound to develop novel agents for preventing the damage of ZIKV infection on the developing brain. IMPORTANCE ZIKV is a neurotropic virus that invades neural progenitor cells (NPCs), causing inhibition of their proliferation and maturation into neurons and glial cells. We have shown previously that heparin, an anticoagulant also used widely during pregnancy, prevents ZIKV-induced cell death with negligible inhibition of virus replication. Here, we demonstrate that heparin also exerts antiviral activity against ZIKV replication using a much lower infectious inoculum. Moreover, heparin interferes with different modalities of virus-induced cell death. Finally, heparin-induced prevention of virus-induced NPC death allows their differentiation into neuroglial cells despite the intracellular accumulation of virions. These results highlight the potential use of heparin, or pharmacological agents derived from it, in pregnant women to prevent the devastating effects of ZIKV infection on the developing brain of their fetuses.


Assuntos
Heparina , Células-Tronco Neurais , Fármacos Neuroprotetores , Zika virus , Anticoagulantes/farmacologia , Antivirais/farmacologia , Morte Celular/efeitos dos fármacos , Diferenciação Celular , Heparina/farmacologia , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/virologia , Neuroglia/citologia , Neuroglia/virologia , Fármacos Neuroprotetores/farmacologia , Replicação Viral , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Infecção por Zika virus/tratamento farmacológico
6.
Brain ; 145(1): 276-284, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35076694

RESUMO

Phosphorylated TDP-43 (pTDP-43) aggregates in the cytoplasm of motor neurons and neuroglia in the brain are one of the pathological hallmarks of amyotrophic lateral sclerosis. Although the axons exceed the total volume of motor neuron soma by several orders of magnitude, systematic studies investigating the presence and distribution of pTDP-43 aggregates within motor nerves are still lacking. The aim of this study is to define the TDP-43/pTDP-43 pathology in diagnostic motor nerve biopsies performed on a large cohort of patients presenting with a lower motor neuron syndrome and to assess whether this might be a discriminating tissue biomarker for amyotrophic lateral sclerosis and non-amyotrophic lateral sclerosis cases. We retrospectively evaluated 102 lower motor neuron syndrome patients referred to our centre for a diagnostic motor nerve biopsy. Histopathological criteria of motor neuron disease and motor neuropathy were applied by two independent evaluators, who were blind to clinical data. TDP-43 and pTDP-43 were evaluated by immunohistochemistry, and results compared to final clinical diagnosis. We detected significant differences between amyotrophic lateral sclerosis and non-amyotrophic lateral sclerosis cases in pTDP-43 expression in myelinated fibres: axonal accumulation was detected in 98.2% of patients with amyotrophic lateral sclerosis versus 30.4% of non-amyotrophic lateral sclerosis samples (P < 0.0001), while concomitant positive staining in Schwan cell cytoplasm was found in 70.2% of patients with amyotrophic lateral sclerosis versus 17.4% of patients who did not have amyotrophic lateral sclerosis (P < 0.001). Importantly, we were also able to detect pTDP-43 aggregates in amyotrophic lateral sclerosis cases displaying normal features at standard histopathological analysis. Our findings demonstrated that a specific pTDP-43 signature is present in the peripheral nervous system of patients with amyotrophic lateral sclerosis, and could be exploited as a specific, accessible tissue biomarker. The detection of pTDP-43 aggregates within motor nerves of living patients with amyotrophic lateral sclerosis, occurring before axonal degeneration, suggests that this is an early event that may contribute to amyotrophic lateral sclerosis pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Neurônios Motores/metabolismo , Sistema Nervoso Periférico , Estudos Retrospectivos
7.
Glia ; 68(6): 1148-1164, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31851405

RESUMO

Myelin, one of the most important adaptations of vertebrates, is essential to ensure efficient propagation of the electric impulse in the nervous system and to maintain neuronal integrity. In the central nervous system (CNS), the development of oligodendrocytes and the process of myelination are regulated by the coordinated action of several positive and negative cell-extrinsic factors. We and others previously showed that secretases regulate the activity of proteins essential for myelination. We now report that the neuronal α-secretase ADAM17 controls oligodendrocyte differentiation and myelin formation in the CNS. Ablation of Adam17 in neurons impairs in vivo and in vitro oligodendrocyte differentiation, delays myelin formation throughout development and results in hypomyelination. Furthermore, we show that this developmental defect is, in part, the result of altered Notch/Jagged 1 signaling. Surprisingly, in vivo conditional loss of Adam17 in immature oligodendrocytes has no effect on myelin formation. Collectively, our data indicate that the neuronal α-secretase ADAM17 is required for proper CNS myelination. Further, our studies confirm that secretases are important post-translational regulators of myelination although the mechanisms controlling CNS and peripheral nervous system (PNS) myelination are distinct.


Assuntos
Proteína ADAM17/metabolismo , Sistema Nervoso Central/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/metabolismo , Proteína ADAM17/genética , Animais , Diferenciação Celular/fisiologia , Sistema Nervoso Central/citologia , Camundongos Transgênicos , Neurogênese/fisiologia
8.
Glia ; 68(1): 95-110, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479164

RESUMO

We have previously reported that prostaglandin D2 Synthase (L-PGDS) participates in peripheral nervous system (PNS) myelination during development. We now describe the role of L-PGDS in the resolution of PNS injury, similarly to other members of the prostaglandin synthase family, which are important for Wallerian degeneration (WD) and axonal regeneration. Our analyses show that L-PGDS expression is modulated after injury in both sciatic nerves and dorsal root ganglia neurons, indicating that it might play a role in the WD process. Accordingly, our data reveals that L-PGDS regulates macrophages phagocytic activity through a non-cell autonomous mechanism, allowing myelin debris clearance and favoring axonal regeneration and remyelination. In addition, L-PGDS also appear to control macrophages accumulation in injured nerves, possibly by regulating the blood-nerve barrier permeability and SOX2 expression levels in Schwann cells. Collectively, our results suggest that L-PGDS has multiple functions during nerve regeneration and remyelination. Based on the results of this study, we posit that L-PGDS acts as an anti-inflammatory agent in the late phases of WD, and cooperates in the resolution of the inflammatory response. Thus, pharmacological activation of the L-PGDS pathway might prove beneficial in resolving peripheral nerve injury.


Assuntos
Oxirredutases Intramoleculares/biossíntese , Lipocalinas/biossíntese , Ativação de Macrófagos/fisiologia , Regeneração Nervosa/fisiologia , Neuropatia Ciática/enzimologia , Animais , Feminino , Oxirredutases Intramoleculares/genética , Lipocalinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Neuropatia Ciática/genética , Neuropatia Ciática/patologia
9.
PLoS Biol ; 15(6): e2001408, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28636612

RESUMO

Myelin is required for proper nervous system function. Schwann cells in developing nerves depend on extrinsic signals from the axon and from the extracellular matrix to first sort and ensheathe a single axon and then myelinate it. Neuregulin 1 type III (Nrg1III) and laminin α2ß1γ1 (Lm211) are the key axonal and matrix signals, respectively, but how their signaling is integrated and if each molecule controls both axonal sorting and myelination is unclear. Here, we use a series of epistasis experiments to show that Lm211 modulates neuregulin signaling to ensure the correct timing and amount of myelination. Lm211 can inhibit Nrg1III by limiting protein kinase A (PKA) activation, which is required to initiate myelination. We provide evidence that excessive PKA activation amplifies promyelinating signals downstream of neuregulin, including direct activation of the neuregulin receptor ErbB2 and its effector Grb2-Associated Binder-1 (Gab1), thereby elevating the expression of the key transcription factors Oct6 and early growth response protein 2 (Egr2). The inhibitory effect of Lm211 is seen only in fibers of small caliber. These data may explain why hereditary neuropathies associated with decreased laminin function are characterized by focally thick and redundant myelin.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Laminina/metabolismo , Bainha de Mielina/metabolismo , Neuregulina-1/metabolismo , Células de Schwann/metabolismo , Animais , Axônios/metabolismo , Western Blotting , Células Cultivadas , Laminina/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Modelos Neurológicos , Neuregulina-1/genética , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nervo Isquiático/citologia , Nervo Isquiático/metabolismo , Nervo Isquiático/ultraestrutura
10.
Mol Ther ; 26(9): 2107-2118, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30017878

RESUMO

Extracellular vesicles (EVs) play a major role in cell-to-cell communication in physiological and pathological conditions, and their manipulation may represent a promising therapeutic strategy. Microglia, the parenchymal mononuclear phagocytes of the brain, modulate neighboring cells also through the release of EVs. The production of custom EVs filled with desired molecules, possibly targeted to make their uptake cell specific, and their administration in biological fluids may represent a valid approach for drug delivery. We engineered a murine microglia cell line, BV-2, to release EVs overexpressing the endogenous "eat me" signal Lactadherin (Mfg-e8) on the surface to target phagocytes and containing the anti-inflammatory cytokine IL-4. A single injection of 107 IL-4+Mfg-e8+ EVs into the cisterna magna modulated established neuroinflammation and significantly reduced clinical signs in the mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Injected IL-4+Mfg-e8+ EVs target mainly phagocytes (i.e., macrophages and microglia) surrounding liquoral spaces, and their cargo promote the upregulation of anti-inflammatory markers chitinase 3-like 3 (ym1) and arginase-1 (arg1), significantly reducing tissue damage. Engineered EVs may represent a biological drug delivery tool able to deliver multiple functional molecules simultaneously to treat neuroinflammatory diseases.


Assuntos
Vesículas Extracelulares/metabolismo , Interleucina-4/metabolismo , Esclerose Múltipla/metabolismo , Animais , Antígeno CD11b/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/ultraestrutura , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Vesículas Extracelulares/ultraestrutura , Feminino , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
J Nanobiotechnology ; 17(1): 49, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30943991

RESUMO

BACKGROUND: The increasing use of gold nanoparticles (AuNPs) in the field of neuroscience instilled hope for their rapid translation to the clinical practice. AuNPs can be engineered to carry therapeutics or diagnostics in the diseased brain, possibly providing greater cell specificity and low toxicity. Although there is a general enthusiasm for these tools, we are in early stages of their development. Overall, their brain penetrance, stability and cell specificity are critical issues that must be addressed to drive AuNPs to the clinic. RESULTS: We studied the kinetic, distribution and stability of PEG-coated AuNPs in mice receiving a single injection into the cisterna magna of the 4th ventricle. AuNPs were conjugated with the fluorescent tag Cy5.5 (Cy5.5-AuNPs) to track their in vivo distribution. Fluorescence levels from such particles were detected in mice for weeks. In situ analysis of brains by immunofluorescence and electron microscopy revealed that Cy5.5-AuNPs penetrated the brain parenchyma, spreading in the CNS parenchyma beneath the 4th ventricle. Cy5.5-AuNPs were preferentially found in neurons, although a subset of resting microglia also entrapped these particles. CONCLUSIONS: Our results suggest that the ICM route for delivering gold particles allows the targeting of neurons. This approach might be pursued to carry therapeutics or diagnostics inside a diseased brain with a surgical procedure that is largely used in gene therapy approaches. Furthermore, this approach could be used for radiotherapy, enhancing the agent's efficacy to kill brain cancer cells.


Assuntos
Encéfalo/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Animais , Carbocianinas/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisterna Magna , Estabilidade de Medicamentos , Corantes Fluorescentes/química , Humanos , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Permeabilidade , Distribuição Tecidual
12.
Proc Natl Acad Sci U S A ; 112(25): E3265-73, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056317

RESUMO

HIV type 1 (HIV-1) infects CD4(+) T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as "Trojan horses" carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages.


Assuntos
Trifosfato de Adenosina/fisiologia , Reservatórios de Doenças , HIV-1/fisiologia , Macrófagos/virologia , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Humanos , Imipramina/farmacologia , Ligação Proteica , Receptores Purinérgicos P2X7/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo , Vírion/fisiologia
13.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496560

RESUMO

We previously reported that in the absence of Prostaglandin D2 synthase (L-PGDS) peripheral nerves are hypomyelinated in development and that with aging they present aberrant myelin sheaths. We now demonstrate that L-PGDS expressed in Schwann cells is part of a coordinated program aiming at preserving myelin integrity. In vivo and in vitro lipidomic, metabolomic and transcriptomic analyses confirmed that myelin lipids composition, Schwann cells energetic metabolism and key enzymes controlling these processes are altered in the absence of L-PGDS. Moreover, Schwann cells undergo a metabolic rewiring and turn to acetate as the main energetic source. Further, they produce ketone bodies to ensure glial cell and neuronal survival. Importantly, we demonstrate that all these changes correlate with morphological myelin alterations and describe the first physiological pathway implicated in preserving PNS myelin. Collectively, we posit that myelin lipids serve as a reservoir to provide ketone bodies, which together with acetate represent the adaptive substrates Schwann cells can rely on to sustain the axo-glial unit and preserve the integrity of the PNS.

14.
Neuron ; 112(2): 209-229.e11, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37972594

RESUMO

Organ injury stimulates the formation of new capillaries to restore blood supply raising questions about the potential contribution of neoangiogenic vessel architecture to the healing process. Using single-cell mapping, we resolved the properties of endothelial cells that organize a polarized scaffold at the repair site of lesioned peripheral nerves. Transient reactivation of an embryonic guidance program is required to orient neovessels across the wound. Manipulation of this structured angiogenic response through genetic and pharmacological targeting of Plexin-D1/VEGF pathways within an early window of repair has long-term impact on configuration of the nerve stroma. Neovessels direct nerve-resident mesenchymal cells to mold a provisionary fibrotic scar by assembling an orderly system of stable barrier compartments that channel regenerating nerve fibers and shield them from the persistently leaky vasculature. Thus, guided and balanced repair angiogenesis enables the construction of a "bridge" microenvironment conducive for axon regrowth and homeostasis of the regenerated tissue.


Assuntos
Angiogênese , Células Endoteliais , Células Endoteliais/metabolismo , Nervos Periféricos/fisiologia , Neovascularização Fisiológica , Axônios , Regeneração Nervosa/fisiologia
15.
Proc Natl Acad Sci U S A ; 107(20): 9198-203, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20439740

RESUMO

Taking advantage of a fluorescent Ca(2+) indicator selectively targeted to the trans-Golgi lumen, we here demonstrate that its Ca(2+) homeostatic mechanisms are distinct from those of the other Golgi subcompartments: (i) Ca(2+) uptake depends exclusively on the activity of the secretory pathway Ca(2+) ATPase1 (SPCA1), whereas the sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) is excluded; (ii) IP(3) generated by receptor stimulation causes Ca(2+) uptake rather than release; (iii) Ca(2+) release can be triggered by activation of ryanodine receptors in cells endowed with robust expression of the latter channels (e.g., in neonatal cardiac myocyte). Finally, we show that, knocking down the SPCA1, and thus altering the trans-Golgi Ca(2+) content, specific functions associated with this subcompartment, such as sorting of proteins to the plasma membrane through the secretory pathway, and the structure of the entire Golgi apparatus are dramatically altered.


Assuntos
Cálcio/metabolismo , Homeostase/fisiologia , Rede trans-Golgi/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Western Blotting , ATPases Transportadoras de Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Miócitos Cardíacos , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Sialiltransferases/genética , Sialiltransferases/metabolismo
16.
JCI Insight ; 8(12)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37159335

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in SACS gene encoding sacsin, a huge protein highly expressed in cerebellar Purkinje cells (PCs). Patients with ARSACS, as well as mouse models, display early degeneration of PCs, but the underlying mechanisms remain unexplored, with no available treatments. In this work, we demonstrated aberrant calcium (Ca2+) homeostasis and its impact on PC degeneration in ARSACS. Mechanistically, we found pathological elevation in Ca2+-evoked responses in Sacs-/- PCs as the result of defective mitochondria and ER trafficking to distal dendrites and strong downregulation of key Ca2+ buffer proteins. Alteration of cytoskeletal linkers, which we identified as specific sacsin interactors, likely account for faulty organellar trafficking in Sacs-/- cerebellum. Based on this pathogenetic cascade, we treated Sacs-/- mice with Ceftriaxone, a repurposed drug that exerts neuroprotection by limiting neuronal glutamatergic stimulation and, thus, Ca2+ fluxes into PCs. Ceftriaxone treatment significantly improved motor performances of Sacs-/- mice, at both pre- and postsymptomatic stages. We correlated this effect to restored Ca2+ homeostasis, which arrests PC degeneration and attenuates secondary neuroinflammation. These findings disclose key steps in ARSACS pathogenesis and support further optimization of Ceftriaxone in preclinical and clinical settings for the treatment of patients with ARSACS.


Assuntos
Cálcio , Células de Purkinje , Animais , Camundongos , Cálcio/metabolismo , Células de Purkinje/metabolismo , Ceftriaxona/metabolismo , Doenças Neuroinflamatórias , Proteínas de Choque Térmico/genética
17.
Mol Autism ; 14(1): 20, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264456

RESUMO

BACKGROUND: Neurodevelopmental disorders (NDDs) are heterogeneous conditions due to alterations of a variety of molecular mechanisms and cell dysfunctions. SETD5 haploinsufficiency leads to NDDs due to chromatin defects. Epigenetic basis of NDDs has been reported in an increasing number of cases while mitochondrial dysfunctions are more common within NDD patients than in the general population. METHODS: We investigated in vitro neural stem cells as well as the brain of the Setd5 haploinsufficiency mouse model interrogating its transcriptome, analyzing mitochondrial structure, biochemical composition, and dynamics, as well as mitochondrial functionality. RESULTS: Mitochondrial impairment is facilitated by transcriptional aberrations originated by the decrease of the SETD5 enzyme. Low levels of SETD5 resulted in fragmented mitochondria, reduced mitochondrial membrane potential, and ATP production both in neural precursors and neurons. Mitochondria were also mislocalized in mutant neurons, with reduced organelles within neurites and synapses. LIMITATIONS: We found several defects in the mitochondrial compartment; however, we can only speculate about their position in the hierarchy of the pathological mechanisms at the basis of the disease. CONCLUSIONS: Our study explores the interplay between chromatin regulation and mitochondria functions as a possible important aspect of SETD5-associated NDD pathophysiology. Our data, if confirmed in patient context, suggest that the mitochondrial activity and dynamics may represent new therapeutic targets for disorders associated with the loss of SETD5.


Assuntos
Haploinsuficiência , Células-Tronco Neurais , Camundongos , Animais , Humanos , Neurônios/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neurais/metabolismo , Cromatina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
18.
Front Cell Neurosci ; 17: 1253543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026702

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive, lethal neurodegenerative disease mostly affecting people around 50-60 years of age. TDP-43, an RNA-binding protein involved in pre-mRNA splicing and controlling mRNA stability and translation, forms neuronal cytoplasmic inclusions in an overwhelming majority of ALS patients, a phenomenon referred to as TDP-43 proteinopathy. These cytoplasmic aggregates disrupt mRNA transport and localization. The axon, like dendrites, is a site of mRNA translation, permitting the local synthesis of selected proteins. This is especially relevant in upper and lower motor neurons, whose axon spans long distances, likely accentuating their susceptibility to ALS-related noxae. In this work we have generated and characterized two cellular models, consisting of virtually pure populations of primary mouse cortical neurons expressing a human TDP-43 fusion protein, wt or carrying an ALS mutation. Both forms facilitate cytoplasmic aggregate formation, unlike the corresponding native proteins, giving rise to bona fide primary culture models of TDP-43 proteinopathy. Neurons expressing TDP-43 fusion proteins exhibit a global impairment in axonal protein synthesis, an increase in oxidative stress, and defects in presynaptic function and electrical activity. These changes correlate with deregulation of axonal levels of polysome-engaged mRNAs playing relevant roles in the same processes. Our data support the emerging notion that deregulation of mRNA metabolism and of axonal mRNA transport may trigger the dying-back neuropathy that initiates motor neuron degeneration in ALS.

19.
J Extracell Vesicles ; 11(2): e12162, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35102719

RESUMO

Mounting evidence suggests that storage has an impact on extracellular vesicles (EVs) properties. While -80°C storage is a widespread approach, some authors proposed improved storage strategies with conflicting results. Here, we designed a systematic study to assess the impact of -80°C storage and freeze-thaw cycles on EVs. We tested the differences among eight storage strategies and investigated the possible fusion phenomena occurring during storage. EVs were collected from human plasma and murine microglia culture by size exclusion chromatography and ultracentrifugation, respectively. The analysis included: concentration, size and zeta potential (tunable resistive pulse sensing), contaminant protein assessment; flow cytometry for the analysis of two single fluorescent-tagged EVs populations (GFP and mCherry), mixed before preservation. We found that -80°C storage reduces EVs concentration and sample purity in a time-dependent manner. Furthermore, it increases the particle size and size variability and modifies EVs zeta potential, with a shift of EVs in size-charge plots. None of the tested conditions prevented the observed effects. Freeze-thaw cycles lead to an EVs reduction after the first cycle and to a cycle-dependent increase in particle size. With flow cytometry, after storage, we observed a significant population of double-positive EVs (GFP+ -mCherry+ ). This observation may suggest the occurrence of fusion phenomena during storage. Our findings show a significant impact of storage on EVs samples in terms of particle loss, purity reduction and fusion phenomena leading to artefactual particles. Depending on downstream analyses and experimental settings, EVs should probably be processed from fresh, non-archival, samples in majority of cases.


Assuntos
Vesículas Extracelulares , Animais , Cromatografia em Gel , Vesículas Extracelulares/química , Humanos , Camundongos , Tamanho da Partícula , Plasma , Ultracentrifugação
20.
Front Oncol ; 12: 974751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226068

RESUMO

Although inflammation appears to play a role in neurolymphomatosis (NL), the mechanisms leading to degeneration in the peripheral nervous system are poorly understood. The purpose of this exploratory study was to identify molecular pathways underlying NL pathogenesis, combining clinical and neuropathological investigation with gene expression (GE) studies. We characterized the clinical and pathological features of eight patients with NL. We further analysed GE changes in sural nerve biopsies obtained from a subgroup of NL patients (n=3) and thirteen patients with inflammatory neuropathies as neuropathic controls. Based on the neuropathic symptoms and signs, NL patients were classified into three forms of neuropathy: chronic symmetrical sensorimotor polyneuropathy (SMPN, n=3), multiple mononeuropathy (MN, n=4) and acute motor-sensory axonal neuropathy (AMSAN, n=1). Predominantly diffuse malignant cells infiltration of epineurium was present in chronic SMPN, whereas endoneurial perivascular cells invasion was observed in MN. In contrast, diffuse endoneurium malignant cells localization occurred in AMSAN. We identified alterations in the expression of 1266 genes, with 115 up-regulated and 1151 down-regulated genes, which were mainly associated with ribosomal proteins (RP) and olfactory receptors (OR) signaling pathways, respectively. Among the top up-regulated genes were actin alpha 1 skeletal muscle (ACTA1) and desmin (DES). Similarly, in NL nerves ACTA1, DES and several RPs were highly expressed, associated with endothelial cells and pericytes abnormalities. Peripheral nerve involvement may be due to conversion towards a more aggressive phenotype, potentially explaining the poor prognosis. The candidate genes reported in this study may be a source of clinical biomarkers for NL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA