Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Molecules ; 29(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064967

RESUMO

The tetrazole moiety remains one of the most interesting scaffolds in the development of new high-energy density materials (HEDMs) because of its desired characteristics, such as high nitrogen content and heat of formation (HOF). The combination of several heterocycles with high HOF seems to be a promising strategy for obtaining energetic materials with superior properties. Herein, we report the synthesis and characterization of a tetrazole polymer, polymethylenetetrazole (PMT), as a potential HEDM. The compound was characterized using NMR, IR, and Raman spectroscopy. Its weight average molecular mass was obtained by static light scattering (SLS), and its physical properties by powder XRD analysis. The density, sensitivity to friction (FS), and impact (IS) of the compound were determined as well. The results of the thermal and energetic properties of PMT suggest that this polymer could be an insensitive explosive.

2.
Arch Pharm (Weinheim) ; 355(9): e2200066, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35594031

RESUMO

In the current study, natural (R)-carvone was utilized as a starting material for the efficient synthesis of two series of isoxazoline derivatives bearing the 1,3,4-thiadiazole moiety. The new compounds were obtained in good yields and were characterized by 1 H and 13 C NMR and HRMS analysis. The newly synthesized monoterpenic isoxazoline 1,3,4-thiadiazole and their thiosemicarbazone intermediate derivatives were evaluated for their anticancer activity in four cancer cell lines (HT-1080, A-549, MCF-7, and MDA-MB-231). Most of the synthesized compounds exhibited moderate to high anticancer effects. Compound 13c showed the highest anticancer activity with IC50 values ranging from 19.33 ± 1.81 to 34.81 ± 3.03 µM. Further investigation revealed that compounds 12e and 13c could inhibit the cell growth of HT-1080 and MCF-7 cells by inducing apoptosis through caspase-3/7 activation. The apoptotic effect was accompanied by an S phase and G2/M cell cycle arrest for 13c and 12e, respectively. Compounds 12e and 13c were assessed in silico using molecular docking and molecular dynamics. We found that compound 13c is moderately active against the caspase-3 protein, which triggers apoptosis via intrinsic and extrinsic routes, making compound 13c a promising candidate to activate the proapoptotic protein (caspase-3).


Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Androstenóis/química , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiadiazóis
3.
Molecules ; 27(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897941

RESUMO

In silico evaluation of various regioisomeric 5- and 3-hydroxy-substituted alkyl 1-aryl-1H-pyrazole-4-carboxylates and their acyclic precursors yielded promising results with respect to their binding in the active site of dihydroorotate dehydrogenase of Plasmodium falciparum (PfDHODH). Consequently, four ethyl 1-aryl-5-hydroxy-1H-pyrazole-4-carboxylates and their 3-hydroxy regioisomers were prepared by two-step syntheses via enaminone-type reagents or key intermediates. The synthesis of 5-hydroxy-1H-pyrazoles was carried out using the literature protocol comprising acid-catalyzed transamination of diethyl [(dimethylamino)methylene]malonate with arylhydrazines followed by base-catalyzed cyclization of the intermediate hydrazones. For the synthesis of isomeric methyl 1-aryl-3-hydroxy-1H-pyrazole-4-carboxylates, a novel two-step synthesis was developed. It comprises acylation of hydrazines with methyl malonyl chloride followed by cyclization of the hydrazines with tert-butoxy-bis(dimethylamino)methane. Testing the pyrazole derivatives for the inhibition of PfDHODH showed that 1-(naphthalene-2-yl)-5-hydroxy-1H-pyrazole-4-carboxylate and 1-(naphthalene-2-yl)-, 1-(2,4,6-trichlorophenyl)-, and 1-[4-(trifluoromethyl)phenyl]-3-hydroxy-1H-pyrazole-4-carboxylates (~30% inhibition) were slightly more potent than a known inhibitor, diethyl α-{[(1H-indazol-5-yl)amino]methylidene}malonate (19% inhibition).


Assuntos
Di-Hidro-Orotato Desidrogenase , Plasmodium falciparum , Ácidos Carboxílicos , Hidrazinas , Malonatos/farmacologia , Naftalenos , Pirazóis/química
4.
Angew Chem Int Ed Engl ; 61(14): e202117587, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35106899

RESUMO

Gold is a scarce element in the Earth's crust but indispensable in modern electronic devices. New, sustainable methods of gold recycling are essential to meet the growing eco-social demand of gold. Here, we describe a simple, inexpensive, and environmentally benign dissolution of gold under mild conditions. Gold dissolves quantitatively in ethanol using 2-mercaptobenzimidazole as a ligand in the presence of a catalytic amount of iodine. Mechanistically, the dissolution of gold begins when I2 oxidizes Au0 and forms a [AuI I2 ]- species, which undergoes subsequent ligand-exchange reactions and forms a stable bis-ligand AuI complex. H2 O2 oxidizes free iodide and regenerated I2 returns back to the catalytic cycle. Addition of a reductant to the reaction mixture precipitates gold quantitatively and partially regenerates the ligand. We anticipate our work will open a new pathway to more sustainable metal recycling with the utilization of just catalytic amounts of reagents and green solvents.

5.
Phys Chem Chem Phys ; 23(44): 25086-25096, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34747952

RESUMO

The hydration and Cl- ion binding of the neurot†ransmitter acetylcholine (ACh+) and its synthetic analogue, carbamoylcholine (CCh+), were studied by combining dilute-solution conductivity measurements with dielectric relaxation spectroscopy and statistical mechanics calculations at 1D-RISM and 3D-RISM level. Chloride ion binding was found to be weak but not negligible. From the ∼30 water molecules coordinating ACh and CCh+ only ∼1/3 is affected in its rotational dynamics by the cation, with the majority - situated close to the hydrophobic moieties - only retarded by a factor of ∼2.5. At vanishing solute concentration cations and the ∼3-4 H2O molecules hydrogen bonding to the CO group of the solute exhibit similar rotational dynamics but increasing concentration and temperature markedly dehydrates ACh+ and CCh+.

6.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070140

RESUMO

COVID-19 represents a new potentially life-threatening illness caused by severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 pathogen. In 2021, new variants of the virus with multiple key mutations have emerged, such as B.1.1.7, B.1.351, P.1 and B.1.617, and are threatening to render available vaccines or potential drugs ineffective. In this regard, we highlight 3CLpro, the main viral protease, as a valuable therapeutic target that possesses no mutations in the described pandemically relevant variants. 3CLpro could therefore provide trans-variant effectiveness that is supported by structural studies and possesses readily available biological evaluation experiments. With this in mind, we performed a high throughput virtual screening experiment using CmDock and the "In-Stock" chemical library to prepare prioritisation lists of compounds for further studies. We coupled the virtual screening experiment to a machine learning-supported classification and activity regression study to bring maximal enrichment and available structural data on known 3CLpro inhibitors to the prepared focused libraries. All virtual screening hits are classified according to 3CLpro inhibitor, viral cysteine protease or remaining chemical space based on the calculated set of 208 chemical descriptors. Last but not least, we analysed if the current set of 3CLpro inhibitors could be used in activity prediction and observed that the field of 3CLpro inhibitors is drastically under-represented compared to the chemical space of viral cysteine protease inhibitors. We postulate that this methodology of 3CLpro inhibitor library preparation and compound prioritisation far surpass the selection of compounds from available commercial "corona focused libraries".


Assuntos
Antivirais/química , Proteases 3C de Coronavírus , Inibidores de Cisteína Proteinase/química , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Humanos
7.
Mol Plant Microbe Interact ; 32(10): 1378-1390, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31063047

RESUMO

During fungal infections, plant cells secrete chitinases, which digest chitin in the fungal cell walls. The recognition of released chitin oligomers via lysin motif (LysM)-containing immune host receptors results in the activation of defense signaling pathways. We report here that Verticillium nonalfalfae, a hemibiotrophic xylem-invading fungus, prevents these digestion and recognition processes by secreting a carbohydrate-binding motif 18 (CBM18)-chitin-binding protein, VnaChtBP, which is transcriptionally activated specifically during the parasitic life stages. VnaChtBP is encoded by the Vna8.213 gene, which is highly conserved within the species, suggesting high evolutionary stability and importance for the fungal lifestyle. In a pathogenicity assay, however, Vna8.213 knockout mutants exhibited wilting symptoms similar to the wild-type fungus, suggesting that Vna8.213 activity is functionally redundant during fungal infection of hop. In a binding assay, recombinant VnaChtBP bound chitin and chitin oligomers in vitro with submicromolar affinity and protected fungal hyphae from degradation by plant chitinases. Moreover, the chitin-triggered production of reactive oxygen species from hop suspension cells was abolished in the presence of VnaChtBP, indicating that VnaChtBP also acts as a suppressor of chitin-triggered immunity. Using a yeast-two-hybrid assay, circular dichroism, homology modeling, and molecular docking, we demonstrated that VnaChtBP forms dimers in the absence of ligands and that this interaction is stabilized by the binding of chitin hexamers with a similar preference in the two binding sites. Our data suggest that, in addition to chitin-binding LysM (CBM50) and Avr4 (CBM14) fungal effectors, structurally unrelated CBM18 effectors have convergently evolved to prevent hydrolysis of the fungal cell wall against plant chitinases and to interfere with chitin-triggered host immunity.


Assuntos
Quitina , Quitinases , Proteínas Fúngicas , Doenças das Plantas , Plantas , Verticillium , Proteínas de Transporte , Quitina/metabolismo , Proteínas Fúngicas/metabolismo , Simulação de Acoplamento Molecular , Doenças das Plantas/microbiologia , Plantas/enzimologia , Plantas/imunologia
8.
Phys Chem Chem Phys ; 21(21): 10970-10980, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31107469

RESUMO

The choline ion (Ch+) is ubiquitous in nature and also its synthetic homologue, chlorocholine (ClCh+), is widely used. Nevertheless, surprisingly little information on the hydration and counter-ion binding of these cations can be found in the literature. In this contribution we report effective hydration numbers, determined by dielectric relaxation spectroscopy, and ion-pair association constants with Cl-, determined by dilute-solution conductivity measurements. In combination with RISM calculations the obtained data suggest that for Ch+ water is bound to the hydroxy group via hydrogen bonds whereas for ClCh+ a rather stiff clathrate-like shell around the chlorine atom seems to be formed. With Cl- both cations form contact ion pairs with association constants of only ∼2 to 3 M-1.

9.
Nucleic Acids Res ; 43(21): 10376-86, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26546516

RESUMO

Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolinium ligands (Phen-DC3, 360A-Br) to the ht-DNA fragment (Tel22) AGGG(TTAGGG)3 using isothermal titration calorimetry, CD and fluorescence spectroscopy, gel electrophoresis and molecular modeling. By global thermodynamic analysis of experimental data we show that the driving forces characterized by contributions of specific interactions, changes in solvation and conformation differ significantly for binding of ligands with low quadruplex selectivity over duplexes (Net, DP77, DP78, TMPyP4; KTel22 ≈ KdsDNA). These contributions are in accordance with the observed structural features (changes) and suggest that upon binding Net, DP77, DP78 and TMPyP4 select hybrid-1 and/or hybrid-2 conformation while Phen-DC3 and 360A-Br induce the transition of hybrid-1 and hybrid-2 to the structure with characteristics of antiparallel or hybrid-3 type conformation.


Assuntos
Quadruplex G , Telômero/química , Termodinâmica , DNA/química , Humanos , Ligantes , Modelos Moleculares
10.
Acta Chim Slov ; 64(3): 560-563, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28862310

RESUMO

Calculations of molecular electrostatic potential were correlated with experimental pKa values for different sets of acidic molecules (carboxylic acids, phenols, and anilines) to obtain linear relationships of variable quality. A single tri-parameter model function was constructed to describe the pKa dependence on MEP maxima together with two automatically generated molecular descriptors, namely the counts of carboxylic acid and amine functional groups.

11.
Angew Chem Int Ed Engl ; 56(46): 14494-14497, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28914483

RESUMO

Many intrinsically disordered proteins (IDP) that fold upon binding retain conformational heterogeneity in IDP-target complexes. The thermodynamics of such fuzzy interactions is poorly understood. Herein we introduce a thermodynamic framework, based on analysis of ITC and CD spectroscopy data, that provides experimental descriptions of IDP association in terms of folding and binding contributions which can be predicted using sequence folding propensities and molecular modeling. We show how IDP can modulate the entropy and enthalpy by adapting their bound-state structural ensemble to achieve optimal binding. This is explained in terms of a free-energy landscape that provides the relationship between free-energy, sequence folding propensity, and disorder. The observed "fuzzy" behavior is possible because of IDP flexibility and also because backbone and side-chain interactions are, to some extent, energetically decoupled allowing IDP to minimize energetically unfavorable folding.


Assuntos
Lógica Fuzzy , Proteínas Intrinsicamente Desordenadas/química , Termodinâmica , Sequência de Aminoácidos , Calorimetria/métodos , Dicroísmo Circular , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Dobramento de Proteína
12.
J Org Chem ; 81(1): 146-61, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26649855

RESUMO

Seven title compounds 12a-g and the (S)-prolinate analogue 13 were prepared in five steps from 2-nitrobenzoic acid (7). Reduction of the nitro group followed by derivatization of the so formed anilines 14 gave the N-alkyl-(15a-c), N-acyl-(16a,b and 19), and N-vinyl derivative 20. NMR spectra of (S)-alanine and (S)-proline derived compounds 12, 13, 14-16, 19, and 20 exhibited two sets of signals corresponding to pairs of conformational diastereomers. The free energy barriers of rotation, ΔG(‡)298 = 82-86 kJ mol(-1), were determined by (1)H NMR for 12a, 12d, 12f, and 12g and evaluated by DFT calculations.

13.
Acta Chim Slov ; 62(3): 555-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26454589

RESUMO

The Zaire Ebola viral protein VP24 selectively inhibits nuclear import of STAT1 and as such blocks interferon-induced antiviral responses vital for cell's emergency. Inhibition of VP24 with small molecule inhibitor may neutralize the threatening action of Ebola virus. We performed molecular docking of compounds from a selected small library of plant polyphenols on to VP24. Our research shows that 1,2,3,6-tetragalloyl glucose, epigallocatechin gallate, chlorogenic acic, oleuropein and miquelianin represent promising leads for further studies.


Assuntos
Membrana Celular/virologia , Ebolavirus , Simulação de Acoplamento Molecular , Plantas/química , Polifenóis/metabolismo , Proteínas Virais/metabolismo , Sítios de Ligação , Humanos , Ligantes , Polifenóis/química , Ligação Proteica , Conformação Proteica , Termodinâmica , Proteínas Virais/química , alfa Carioferinas/química , alfa Carioferinas/metabolismo
14.
Phys Chem Chem Phys ; 16(36): 19314-26, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25099487

RESUMO

The relative position of the hydroxylic and the carboxylic group in the isomeric hydroxybenzoate (HB) anions is known to have a large impact on transport properties of this species. It also influences crucially the self-organisation of cationic surfactants. In this article a systematic investigation of aqueous solutions of the ortho, meta, and para isomers of the HB anion is presented. Molecular dynamics simulations of all three HB isomers were conducted for two different concentrations at 298.15 K and using two separate water models. From the resulting trajectories we calculated the self-diffusion coefficient of each isomer. According to the calculated self-diffusion coefficients, isomers were ranked in the order o-HB > m-HB > p-HB at both concentrations for both the used SPC and SPC/E water models, which agrees very well with the experiment. The structural analysis revealed that at lower concentration, where the tendency for dimerisation or cluster formation is low, hydrogen bonding with water determines the mobility of the HB anion. o-HB forms the least hydrogen bonds and is therefore the most mobile, and p-HB, which forms the most hydrogen bonds with water, is the least mobile isomer. At higher concentration the formation of clusters also needs to be considered. The ortho isomer predominantly forms dimers with 2 hydrogen bonds per dimer between one OH and one carboxylate group of each anion. m-HB mostly forms clusters of sizes around 5 and p-HB forms clusters of sizes even larger than 10, which can be either rings or chains.

15.
J Biol Chem ; 287(11): 8613-20, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22262846

RESUMO

Human tumor necrosis factor α (TNF-α) exists in its functional state as a homotrimeric protein and is involved in inflammation processes and immune response of a human organism. Overproduction of TNF-α results in the development of chronic autoimmune diseases that can be successfully treated by inhibitors such as monoclonal antibodies. However, the nature of antibody-TNF-α recognition remains elusive due to insufficient understanding of its molecular driving forces. Therefore, we studied the energetics of binding of a therapeutic antibody fragment (Fab) to the native and non-native forms of TNF-α by employing calorimetric and spectroscopic methods. Global thermodynamic analysis of data obtained from the corresponding binding and urea-induced denaturation experiments has been supported by structural modeling. We demonstrate that the observed high affinity binding of Fab to TNF-α is an enthalpy-driven process due mainly to specific noncovalent interactions taking place at the TNF-α-Fab binding interface. It is coupled to entropically unfavorable conformational changes and accompanied by entropically favorable solvation contributions. Moreover, the three-state model analysis of TNF-α unfolding shows that at physiological concentrations, TNF-α may exist not only as a biologically active trimer but also as an inactive monomer. It further suggests that even small changes of TNF-α concentration could have a considerable effect on the TNF-α activity. We believe that this study sets the energetic basis for understanding of TNF-α inhibition by antibodies and its unfolding linked with the concentration-dependent activity regulation.


Assuntos
Afinidade de Anticorpos/fisiologia , Sítios de Ligação de Anticorpos , Fragmentos Fab das Imunoglobulinas/química , Dobramento de Proteína , Multimerização Proteica , Fator de Necrose Tumoral alfa/química , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Termodinâmica , Fator de Necrose Tumoral alfa/imunologia
16.
J Biomol Struct Dyn ; 41(7): 2900-2910, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35168469

RESUMO

The recent outbreak of COVID-19 (Coronavirus Disease 2019), caused by a novel SARS-CoV-2 virus, has led to public health emergencies worldwide where time is as important as equipment to save lives. Antimalarial drugs such as hydroxychloroquine and chloroquine derivatives are used in emergencies but they are not suitable for patients with high blood pressure, diabetes and heart problems. Since there are no approved drugs for this disease, science is challenged to find vaccines and new drugs. Therefore, as part of our Silico drug design strategy, we identified drug-like compounds that inhibit replication of the main protease (Mpro) of SARS-CoV-2 based on receptor-based virtual database screening, molecular docking, molecular dynamics, and drug-similarity profiling from the NANPDB natural products database available at North African. The two resulting hit compounds named 5- Chloro-Omega-hydroxy-1-O-methylemodin and cystodion E showed the highest binding energy with Mpro of SARS-CoV-2 and strong inhibitory activity compared with the previously published N3 inhibitor. The complexes of these two compounds were validated by molecular dynamics analysis (RMSD, RMSF, Rg, total number of hydrogen bonds and secondary structure fractions of the protein in the complex) as the best method to evaluate the biological stability of the system. Therefore, these molecules deserve more attention in drug development compared to COVID-19. HighlightsA large database of natural compounds was screened against nCoV-2's Mpro.Molecular docking and Molecular dynamics were used as powerful methods.Two compounds were found are very attractive to inhibit Mpro of nCoV-2.ADME-Tox profiling is evaluated the active compounds are not cancerogenic.Communicated by Ramaswamy H. Sarma.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Emergências , Simulação de Acoplamento Molecular , Peptídeo Hidrolases
17.
Eur J Med Chem ; 247: 115049, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36577215

RESUMO

The leishmaniasis are a group of vector-borne diseases caused by a protozoan parasite from the genus Leishmania. In this study, a series of thiazolopyrimidine derivatives were designed and synthesized as novel antileishmanial agents with LmPTR1 inhibitory activity. The final compounds were evaluated for their in vitro antipromastigote activity, LmPTR1 and hDHFR enzyme inhibitory activities, and cytotoxicity on RAW264.7 and L929 cell lines. Based on the bioactivity results, three compounds, namely L24f, L24h and L25c, were selected for evaluation of their in vivo efficacy on CL and VL models in BALB/c mice. Among them, two promising compounds, L24h and L25c, showed in vitro antipromastigote activity against L. tropica with the IC50 values of 0.04 µg/ml and 6.68 µg/ml; against L. infantum with the IC50 values of 0.042 µg/ml and 6.77 µg/ml, respectively. Moreover, the title compounds were found to have low in vitro cytotoxicity on L929 and RAW264.7 cell lines with the IC50 14.08 µg/ml and 21.03 µg/ml, and IC50 15.02 µg/ml and 8.75 µg/ml, respectively. LmPTR1 enzyme inhibitory activity of these compounds was determined as 257.40 µg/ml and 59.12 µg/ml and their selectivity index (SI) over hDHFR was reported as 42.62 and 7.02, respectively. In vivo studies presented that L24h and L25c have a significant antileishmanial activity against footpad lesion development of CL and at weight measurement of VL group in comparison to the reference compound, Glucantime®. Also, docking studies were carried out with selected compounds and other potential Leishmania targets to detect the putative targets of the title compounds. Taken together, all these findings provide an important novel lead structure for the antileishmanial drug development.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , Animais , Camundongos , Leishmaniose/tratamento farmacológico , Camundongos Endogâmicos BALB C
18.
J Biomol Struct Dyn ; 41(7): 2759-2771, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35174765

RESUMO

In this research paper, we report the cytotoxic and apoptotic effects of 1,2,3-triazole derivatives in a unique 7a-g or hybrid form with isoxazoline 8a-g using the eugenol as a precursor in HT-1080 fibrosarcoma, MCF-7, and MDA-MB-231 breast carcinoma, and A-549 lung carcinoma. Data obtained on the cytotoxic effects have shown that hybrid compounds 8a-e induced a significant anticancer activity and are more important than the ones of 1,2,3-triazole derivatives 7a-g with IC50 ranging from 18 to 43 µM for the hybrids 8a-e and from 15 to 29 µM for mono-adducts 7a-g in all cell lines. Concerning the apoptotic study, compounds 7b and 8a can induce apoptosis in HT-1080 and A-549 cells as revealed by Annexin-V labeling and caspase-3/7 activity, also, the apoptotic effect was accompanied by cell cycle arrest at G2/M phase in the case of compounds 7b and 8a. Both compounds were evaluated in-silico through molecular docking and molecular dynamics and compound 8a is very active against Bcl-2 protein triggering apoptosis phenomenon by intrinsic pathway, therefore compound 8a is a potential candidate to inhibit the anti-apoptotic protein (Bcl-2).Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Carcinoma , Fibrossarcoma , Humanos , Simulação de Acoplamento Molecular , Eugenol/farmacologia , Triazóis/química , Linhagem Celular Tumoral , Antineoplásicos/química , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
19.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36145371

RESUMO

The structural polymorphism of G-quadruplex nucleic acids is an important factor in their recognition by proteins and small-molecule ligands. However, it is not clear why the binding of several ligands alters G-quadruplex topology. We addressed this question by following the (un)folding and binding of the human telomeric fragment 5'-(GGGTTA)3GGGT-3' (22GT) by calorimetry (DSC, ITC) and spectroscopy (CD). A thermodynamic analysis of the obtained data led to a detailed description of the topological phase space of stability (phase diagram) of 22GT and shows how it changes in the presence of a specific bisquinolinium ligand (360A). Various 1:1 and 2:1 ligand-quadruplex complexes were observed. With increasing temperature, the 1:1 complexes transformed into 2:1 complexes, which is attributed to the preferential binding of the ligand to the folding intermediates. Overall, the dissection of the thermodynamic parameters in combination with molecular modelling clarified the driving forces of the topological quadruplex transformations in a wide range of ligand concentrations and temperatures.

20.
Food Chem ; 373(Pt B): 131594, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34838409

RESUMO

The abundance of polyphenols in edible plants makes them an important component of human nutrition. Considering the ongoing COVID-19 pandemic, a number of studies have investigated polyphenols as bioactive constituents. We applied in-silico molecular docking as well as molecular dynamics supported by in-vitro assays to determine the inhibitory potential of various plant polyphenols against an important SARS-CoV-2 therapeutic target, the protease 3CLpro. Of the polyphenols in initial in-vitro screening, quercetin, ellagic acid, curcumin, epigallocatechin gallate and resveratrol showed IC50 values of 11.8 µM to 23.4 µM. In-silico molecular dynamics simulations indicated stable interactions with the 3CLpro active site over 100 ns production runs. Moreover, surface plasmon resonance spectroscopy was used to measure the binding of polyphenols to 3CLpro in real time. Therefore, we provide evidence for inhibition of SARS-CoV-2 3CLpro by natural plant polyphenols, and suggest further research into the development of these novel 3CLpro inhibitors or biochemical probes.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Polifenóis , SARS-CoV-2/efeitos dos fármacos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Polifenóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA