RESUMO
Isomer spectroscopy of heavy neutron-rich nuclei beyond the N=126 closed shell has been performed for the first time at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. New millisecond isomers have been identified at low excitation energies, 985.3(19) keV in ^{213}Tl and 874(5) keV in ^{215}Tl. The measured half-lives of 1.34(5) ms in ^{213}Tl and 3.0(3) ms in ^{215}Tl suggest spins and parities 11/2^{-} with the single proton-hole configuration πh_{11/2} as leading component. They are populated via E1 transitions by the decay of higher-lying isomeric states with proposed spin and parity 17/2^{+}, interpreted as arising from a single πs_{1/2} proton hole coupled to the 8^{+} seniority isomer in the ^{A+1}Pb cores. The lowering of the 11/2^{-} states is ascribed to an increase of the πh_{11/2} proton effective single-particle energy as the second νg_{9/2} orbital is filled by neutrons, owing to a significant reduction of the proton-neutron monopole interaction between the πh_{11/2} and νg_{9/2} orbitals. The new ms isomers provide the first experimental observation of shell evolution in the almost unexplored N>126 nuclear region below doubly magic ^{208}Pb.
RESUMO
The nuclear two-photon or double-gamma (2γ) decay is a second-order electromagnetic process whereby a nucleus in an excited state emits two gamma rays simultaneously. To be able to directly measure the 2γ decay rate in the low-energy regime below the electron-positron pair-creation threshold, we combined the isochronous mode of a storage ring with Schottky resonant cavities. The newly developed technique can be applied to isomers with excitation energies down to â¼100 keV and half-lives as short as â¼10 ms. The half-life for the 2γ decay of the first-excited 0^{+} state in bare ^{72}Ge ions was determined to be 23.9(6) ms, which strongly deviates from expectations.
RESUMO
We investigated decays of ^{51,52,53}K at the ISOLDE Decay Station at CERN in order to understand the mechanism of the ß-delayed neutron-emission (ßn) process. The experiment quantified neutron and γ-ray emission paths for each precursor. We used this information to test the hypothesis, first formulated by Bohr in 1939, that neutrons in the ßn process originate from the structureless "compound nucleus." The data are consistent with this postulate for most of the observed decay paths. The agreement, however, is surprising because the compound-nucleus stage should not be achieved in the studied ß decay due to insufficient excitation energy and level densities in the neutron emitter. In the ^{53}K ßn decay, we found a preferential population of the first excited state in ^{52}Ca that contradicted Bohr's hypothesis. The latter was interpreted as evidence for direct neutron emission sensitive to the structure of the neutron-unbound state. We propose that the observed nonstatistical neutron emission proceeds through the coupling with nearby doorway states that have large neutron-emission probabilities. The appearance of "compound-nucleus" decay is caused by the aggregated small contributions of multiple doorway states at higher excitation energy.
RESUMO
The ß decays from both the ground state and a long-lived isomer of ^{133}In were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to ß, γ, and neutron spectroscopy, the comparative partial half-lives (logft) have been measured for all their dominant ß-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their ß decays selectively populate only a few isolated neutron unbound states in ^{133}Sn. Precise energy and branching-ratio measurements of those resonances allow us to benchmark ß-decay theories at an unprecedented level in this region of the nuclear chart. The results show good agreement with the newly developed large-scale shell model (LSSM) calculations. The experimental findings establish an archetype for the ß decay of neutron-rich nuclei southeast of ^{132}Sn and will serve as a guide for future theoretical development aiming to describe accurately the key ß decays in the rapid-neutron capture (r-) process.
RESUMO
The Rare-RI Ring (R3) is a recently commissioned cyclotronlike storage ring mass spectrometer dedicated to mass measurements of exotic nuclei far from stability at Radioactive Isotope Beam Factory (RIBF) in RIKEN. The first application of mass measurement using the R3 mass spectrometer at RIBF is reported. Rare isotopes produced at RIBF-^{127}Sn, ^{126}In, ^{125}Cd, ^{124}Ag, ^{123}Pd-were injected in R3. Masses of ^{126}In, ^{125}Cd, and ^{123}Pd were measured whereby the mass uncertainty of ^{123}Pd was improved. This is the first reported measurement with a new storage ring mass spectrometry technique realized at a heavy-ion cyclotron and employing individual injection of the preidentified rare nuclei. The latter is essential for the future mass measurements of the rarest isotopes produced at RIBF. The impact of the new ^{123}Pd result on the solar r-process abundances in a neutron star merger event is investigated by performing reaction network calculations of 20 trajectories with varying electron fraction Y_{e}. It is found that the neutron capture cross section on ^{123}Pd increases by a factor of 2.2 and ß-delayed neutron emission probability, P_{1 n}, of ^{123}Rh increases by 14%. The neutron capture cross section on ^{122}Pd decreases by a factor of 2.6 leading to pileup of material at A=122, thus reproducing the trend of the solar r-process abundances. The trend of the two-neutron separation energies (S_{2n}) was investigated for the Pd isotopic chain. The new mass measurement with improved uncertainty excludes large changes of the S_{2n} value at N=77. Such large increase of the S_{2n} values before N=82 was proposed as an alternative to the quenching of the N=82 shell gap to reproduce r-process abundances in the mass region of A=112-124.
RESUMO
Mass-separated ^{187}Ta_{114} in a high-spin isomeric state has been produced for the first time by multinucleon transfer reactions, employing an argon gas-stopping cell and laser ionization. Internal γ rays revealed a T_{1/2}=7.3±0.9 s isomer at 1778±1 keV, which decays through a rotational band with perturbations associated with the approach to a prolate-oblate shape transition. Model calculations show less influence from triaxiality compared to heavier elements in the same mass region. The isomer-decay reduced E2 hindrance factor f_{ν}=27±1 supports the interpretation that axial symmetry is approximately conserved.
RESUMO
The ^{12}C+^{12}C fusion reaction plays a critical role in the evolution of massive stars and also strongly impacts various explosive astrophysical scenarios. The presence of resonances in this reaction at energies around and below the Coulomb barrier makes it impossible to carry out a simple extrapolation down to the Gamow window-the energy regime relevant to carbon burning in massive stars. The ^{12}C+^{12}C system forms a unique laboratory for challenging the contemporary picture of deep sub-barrier fusion (possible sub-barrier hindrance) and its interplay with nuclear structure (sub-barrier resonances). Here, we show that direct measurements of the ^{12}C+^{12}C fusion cross section may be made into the Gamow window using an advanced particle-gamma coincidence technique. The sensitivity of this technique effectively removes ambiguities in existing measurements made with gamma ray or charged-particle detection alone. The present cross-section data span over 8 orders of magnitude and support the fusion-hindrance model at deep sub-barrier energies.
RESUMO
The nuclei below lead but with more than 126 neutrons are crucial to an understanding of the astrophysical r process in producing nuclei heavier than Aâ¼190. Despite their importance, the structure and properties of these nuclei remain experimentally untested as they are difficult to produce in nuclear reactions with stable beams. In a first exploration of the shell structure of this region, neutron excitations in ^{207}Hg have been probed using the neutron-adding (d,p) reaction in inverse kinematics. The radioactive beam of ^{206}Hg was delivered to the new ISOLDE Solenoidal Spectrometer at an energy above the Coulomb barrier. The spectroscopy of ^{207}Hg marks a first step in improving our understanding of the relevant structural properties of nuclei involved in a key part of the path of the r process.
RESUMO
The ß decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{ß} window, only three negative parity states are populated directly in the ß decay. The data provide a unique test of the competition between allowed Gamow-Teller and Fermi, and first-forbidden ß decays, essential for the understanding of the nucleosynthesis of heavy nuclei in the rapid neutron capture process. Furthermore, the observation of the parity changing 0^{+}â0^{-}ß decay where the daughter state is core excited is unique, and can provide information on mesonic corrections of effective operators.
RESUMO
The ß-delayed γ-ray spectroscopy of neutron-rich ^{123,125}Ag isotopes is investigated at the Radioactive Isotope Beam Factory of RIKEN, and the long-predicted 1/2^{-} ß-emitting isomers in ^{123,125}Ag are identified for the first time. With the new experimental results, the systematic trend of energy spacing between the lowest 9/2^{+} and 1/2^{-} levels is extended in Ag isotopes up to N=78, providing a clear signal for the reduction of the Z=40 subshell gap in Ag towards N=82. Shell-model calculations with the state-of-the-art V_{MU} plus M3Y spin-orbit interaction give a satisfactory description of the low-lying states in ^{123,125}Ag. The tensor force is found to play a crucial role in the evolution of the size of the Z=40 subshell gap. The observed inversion of the single-particle levels around ^{123}Ag can be well interpreted in terms of the monopole shift of the π1g_{9/2} orbitals mainly caused by the increasing occupation of ν1h_{11/2} orbitals.
RESUMO
The shell structure of atomic nuclei is associated with 'magic numbers' and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During ß(+)-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron-neutrino pair with either parallel or antiparallel spins, in a Gamow-Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow-Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus. Here we report measurements of the half-life and decay energy for the decay of (100)Sn, the heaviest doubly magic nucleus with equal numbers of protons and neutrons. In the ß-decay of (100)Sn, a large fraction of the strength is observable because of the large decay energy. We determine the largest Gamow-Teller strength so far measured in allowed nuclear ß-decay, establishing the 'superallowed' nature of this Gamow-Teller transition. The large strength and the low-energy states in the daughter nucleus, (100)In, are well reproduced by modern, large-scale shell model calculations.
RESUMO
Fast-neutron-induced fission of ^{238}U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fission fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. This has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.
RESUMO
The ß-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with ß-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region Nâ³126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the ß-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.
RESUMO
The ^{54}Fe nucleus was populated from a ^{56}Fe beam impinging on a Be target with an energy of E/A=500 MeV. The internal decay via γ-ray emission of the 10^{+} metastable state was observed. As the structure of this isomeric state has to involve at least four unpaired nucleons, it cannot be populated in a simple two-neutron removal reaction from the ^{56}Fe ground state. The isomeric state was produced in the low-momentum (-energy) tail of the parallel momentum (energy) distribution of ^{54}Fe, suggesting that it was populated via the decay of the Δ^{0} resonance into a proton. This process allows the population of four-nucleon states, such as the observed isomer. Therefore, it is concluded that the observation of this 10^{+} metastable state in ^{54}Fe is a consequence of the quark structure of the nucleons.
RESUMO
Total absorption spectroscopy is used to investigate the ß-decay intensity to states above the neutron separation energy followed by γ-ray emission in (87,88)Br and (94)Rb. Accurate results are obtained thanks to a careful control of systematic errors. An unexpectedly large γ intensity is observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The γ branching as a function of excitation energy is compared to Hauser-Feshbach model calculations. For (87)Br and (88)Br the γ branching reaches 57% and 20%, respectively, and could be explained as a nuclear structure effect. Some of the states populated in the daughter can only decay through the emission of a large orbital angular momentum neutron with a strongly reduced barrier penetrability. In the case of neutron-rich (94)Rb the observed 4.5% branching is much larger than the calculations performed with standard nuclear statistical model parameters, even after proper correction for fluctuation effects on individual transition widths. The difference can be reconciled by introducing an enhancement of 1 order of magnitude in the photon strength to neutron strength ratio. An increase in the photon strength function of such magnitude for very neutron-rich nuclei, if it proves to be correct, leads to a similar increase in the (n,γ) cross section that would have an impact on r process abundance calculations.
RESUMO
The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.
RESUMO
The ß-decay half-lives of 110 neutron-rich isotopes of the elements from _{37}Rb to _{50}Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A≈130) and the rare-earth-element (A≈160) abundance peaks may result from the freeze-out of an (n,γ)â(γ,n) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process events.
RESUMO
Search for a new kind of superfluidity built on collective proton-neutron pairs with aligned spin is performed studying the Gamow-Teller decay of the T=1, J(π)=0+ ground state of (62)Ge into excited states of the odd-odd N=Z nucleus (62)Ga. The experiment is performed at GSI Helmholtzzentrum für Shwerionenforshung with the (62)Ge ions selected by the fragment separator and implanted in a stack of Si-strip detectors, surrounded by the RISING Ge array. A half-life of T1/2=82.9(14) ms is measured for the (62)Ge ground state. Six excited states of (62)Ga, populated below 2.5 MeV through Gamow-Teller transitions, are identified. Individual Gamow-Teller transition strengths agree well with theoretical predictions of the interacting shell model and the quasiparticle random phase approximation. The absence of any sizable low-lying Gamow-Teller strength in the reported beta-decay experiment supports the hypothesis of a negligible role of coherent T=0 proton-neutron correlations in (62)Ga.
RESUMO
Excited states in the N=102 isotones 166Gd and 164Sm have been observed following isomeric decay for the first time at RIBF, RIKEN. The half-lives of the isomeric states have been measured to be 950(60) and 600(140) ns for 166Gd and 164Sm, respectively. Based on the decay patterns and potential energy surface calculations, including ß6 deformation, a spin and parity of 6- has been assigned to the isomeric states in both nuclei. Collective observables are discussed in light of the systematics of the region, giving insight into nuclear shape evolution. The decrease in the ground-band energies of 166Gd and 164Sm (N=102) compared to 164Gd and 162Sm (N=100), respectively, presents evidence for the predicted deformed shell closure at N=100.
RESUMO
A new isomer with a half-life of 23.0(8) ms has been identified at 2406 keV in (126)Pd and is proposed to have a spin and parity of 10(+) with a maximally aligned configuration comprising two neutron holes in the 1h(11/2) orbit. In addition to an internal-decay branch through a hindered electric octupole transition, ß decay from the long-lived isomer was observed to populate excited states at high spins in (126)Ag. The smaller energy difference between the 10(+) and 7(-) isomers in (126)Pd than in the heavier N=80 isotones can be interpreted as being ascribed to the monopole shift of the 1h(11/2) neutron orbit. The effects of the monopole interaction on the evolution of single-neutron energies below (132)Sn are discussed in terms of the central and tensor forces.