Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biometeorol ; 64(10): 1783-1793, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32632472

RESUMO

Plant phenological dataset collected at 42 sites across the mainland of Finland and covering the years 1997-2017 is presented and analysed for temporal trends. The dataset of n = 16,257 observations represents eleven plant species and fifteen phenological stages and results in forty different variables, i.e. phenophases. Trend analysis was carried out for n = 808 phenological time-series that contained at least 10 observations over the 21-year study period. A clear signal of advancing spring and early-summer phenology was detected, 3.4 days decade-1, demonstrated by a high proportion of negative trends for phenophases occurring in April through June. Latitudinal correlation indicated stronger signal of spring and early-summer phenology towards the northern part of the study region. The autumn signal was less consistent and showed larger within-site variations than those observed in other seasons. More than 60% of the dates based on single tree/monitoring square were exactly the same as the averages from multiple trees/monitoring squares within the site. In particular, the reliability of data on autumn phenology was increased by multiple observations per site. The network is no longer active.


Assuntos
Clima , Árvores , Mudança Climática , Finlândia , Reprodutibilidade dos Testes , Estações do Ano , Temperatura
2.
Int J Biometeorol ; 60(8): 1227-36, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26686678

RESUMO

Trends in the timing of spring and autumn phenophases of Betula pubescens were investigated in the southern, middle, and northern boreal zones in Finland. The field observations were carried out at 21 sites in the Finnish National Phenological Network in 1997-2013. The effective temperature sum of the thermal growth period, i.e. the sum of the positive differences between diurnal mean temperatures and 5 °C (ETS1), increased annually on average by 6-7 degree day units. Timing of bud burst remained constant in the southern and middle boreal zones but advanced annually by 0.5 day in the northern boreal zone. The effective temperature sum at bud burst (ETS2) showed no trend in the southern and middle boreal zones, whereas ETS2 increased on average from 20-30 to 50 degree day units in the northern boreal zone, almost to the same level as in the other zones. Increase in ETS2 indicates that the trees did not start their growth in very early spring despite warmer spring temperatures. The timing of leaf colouring and leaf fall remained almost constant in the southern boreal zones, whereas these advanced annually by 0.3 and 0.6 day in the middle boreal zone and by 0.6 and 0.4 day in the northern boreal zone, respectively. The duration of the growth period remained constant in all boreal zones. The results indicate high buffering capacity of B. pubescens against temperature changes. The study also shows the importance of the duration of phenological studies: some trends in spring phenophases had levelled out, while new trends in autumn phases had emerged after earlier studies in the same network for a shorter observation period.


Assuntos
Betula/crescimento & desenvolvimento , Temperatura , Clima , Finlândia , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano
3.
Environ Monit Assess ; 186(7): 4299-307, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24652377

RESUMO

This study measured heavy metal and nutrient concentrations of two feather mosses during the periods of dry storage. Samples (Hylocomium splendens, Pleurozium schreberi) were collected in the nationwide moss surveys carried out on the permanent sample plots of the 8th Finnish National Forest Inventory in 1985-86, 1990, 1995 and 2000. A small amount of each moss sample was analyzed soon after collection, and the remainder was dried and stored at the Paljakka environmental specimen bank (ESB). The 108 stored samples from 27 plots were reanalyzed in 2008. Concentrations of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) and nutrients (Ca, K, Mg, P) were determined and compared for each survey year. Overall, Fe, Pb and Cr concentrations decreased, and Cu concentrations increased significantly during storage. The greatest decrease was observed in samples from plots where their initial concentrations were the highest. Changes in the concentrations of Cd, Ni and Zn were less pronounced. The loss of heavy metals is likely due to drying when cell membranes rupture and some of the surface material is lost. K, P and, to some extent, Mg concentrations increased during storage, whereas Ca did not change significantly. Nutrient increase is probably due to their movement from older to younger growths during the initial phase of drying. Ca is mostly bound to cell walls and is not easily released. Results emphasize the importance of establishing the intended use of a stored moss prior to sampling, in order to select and optimize an appropriate storage technique.


Assuntos
Poluentes Atmosféricos/análise , Bryopsida/química , Monitoramento Ambiental/métodos , Metais Pesados/análise , Oligoelementos/análise
4.
Environ Pollut ; 261: 114054, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32078876

RESUMO

Mosses take up nitrogen (N) mainly from precipitation through their surfaces, which makes them competent bioindicators of N deposition. We found positive relationships between the total N concentration (mossN%) of common terrestrial moss species (feather mosses Pleurozium schreberi and Hylocomium splendens, and a group of Dicranum species) and different forms of N deposition in 11-16 coniferous forests with low N deposition load in Finland. The mosses were collected either inside (Dicranum group) or both inside and outside (feather mosses) the forests. Deposition was monitored in situ as bulk deposition (BD) and stand throughfall (TF) and detected for ammonium (NH4+-N), nitrate (NO3--N), dissolved organic N (DON), and total N (Ntot, kg ha-1yr-1). Ntot deposition was lower in TF than BD indicating that tree canopies absorbed N from deposition in N limited boreal stands. However, mossN% was higher inside than outside the forests. In regression equations, inorganic N in BD predicted best the mossN% in openings, while DON in TF explained most variation of mossN% in forests. An asymptotic form of mossN% vs. TF Ntot curves in forests and free NH4+-N accumulation in tissues in the southern plots suggested mosses were near the N saturation state already at the Ntot deposition level of 3-5 kg ha-1yr-1. N leachate from ground litterfall apparently also contributed the N supply of mosses. Our study yielded new information on the sensitivity of boreal mosses to low N deposition and their response to different N forms in canopy TF entering moss layer. The equations predicting the Ntot deposition with mossN% showed a good fit both in forest sites and openings, especially in case of P. schreberi. However, the open site mossN% is a preferable predictor of N deposition in monitoring studies to minimize the effect of tree canopies and N leachate from litterfall on the estimates.


Assuntos
Briófitas , Finlândia , Florestas , Nitrogênio/análise , Árvores
5.
Environ Sci Eur ; 30(1): 53, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30613461

RESUMO

BACKGROUND: This paper aims to investigate the correlations between the concentrations of nine heavy metals in moss and atmospheric deposition within ecological land classes covering Europe. Additionally, it is examined to what extent the statistical relations are affected by the land use around the moss sampling sites. Based on moss data collected in 2010/2011 throughout Europe and data on total atmospheric deposition modelled by two chemical transport models (EMEP MSC-E, LOTOS-EUROS), correlation coefficients between concentrations of heavy metals in moss and in modelled atmospheric deposition were specified for spatial subsamples defined by ecological land classes of Europe (ELCE) as a spatial reference system. Linear discriminant analysis (LDA) and logistic regression (LR) were then used to separate moss sampling sites regarding their contribution to the strength of correlation considering the areal percentage of urban, agricultural and forestry land use around the sampling location. After verification LDA models by LR, LDA models were used to transform spatial information on the land use to maps of potential correlation levels, applicable for future network planning in the European Moss Survey. RESULTS: Correlations between concentrations of heavy metals in moss and in modelled atmospheric deposition were found to be specific for elements and ELCE units. Land use around the sampling sites mainly influences the correlation level. Small radiuses around the sampling sites examined (5 km) are more relevant for Cd, Cu, Ni, and Zn, while the areal percentage of urban and agricultural land use within large radiuses (75-100 km) is more relevant for As, Cr, Hg, Pb, and V. Most valid LDA models pattern with error rates of < 40% were found for As, Cr, Cu, Hg, Pb, and V. Land use-dependent predictions of spatial patterns split up Europe into investigation areas revealing potentially high (= above-average) or low (= below-average) correlation coefficients. CONCLUSIONS: LDA is an eligible method identifying and ranking boundary conditions of correlations between atmospheric deposition and respective concentrations of heavy metals in moss and related mapping considering the influence of the land use around moss sampling sites.

6.
Environ Sci Pollut Res Int ; 23(16): 16790-801, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27189454

RESUMO

The use of transplanted moss (Pleurozium schreberi) in active biomonitoring of traffic-related emissions of Pd, Pt, and Rh was studied. Moss mats were transplanted to three locations along highway E75 (in Oulu, Finland) at three different distances from the highway. Five samples were collected from a background site after the same exposure period. Mass fractions of Pd, Pt, and Rh as well as mass fractions of 18 other elements were determined in these samples. The results indicated that P. schreberi is well suited for active biomonitoring of Pd, Pt, and Rh. Mass fractions above the background values were observed in the samples exposed to traffic-related emissions. When the results were compared with those of the other elements, high correlations of Pd, Pt, and Rh with commonly traffic-related elements (e.g., Cu, Ni, Sb, Zn, etc.) were found. It was also found that the amounts of Pd, Pt, and Rh in moss samples decreased when the distance to the highway increased. This trend gives evidence for the suitability of P. schreberi for active biomonitoring of Pd, Pt, and Rh. Furthermore, it can be concluded that the mass fractions determined in this study provide valuable evidence about the current state of Pd, Pt, and Rh emissions in Oulu, Finland.


Assuntos
Poluentes Atmosféricos/análise , Bryopsida/química , Monitoramento Ambiental/métodos , Paládio/análise , Platina/análise , Ródio/análise , Finlândia , Emissões de Veículos/análise
7.
Environ Sci Pollut Res Int ; 23(11): 10457-10476, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27068915

RESUMO

For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different spatial scales (European and national level as well as landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N) concentrations in moss in Europe (1990-2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990-2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990-2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests.


Assuntos
Poluentes Atmosféricos/análise , Briófitas/química , Poluição Ambiental/análise , Metais Pesados/análise , Nitrogênio/análise , Ecossistema , Europa (Continente) , Medição de Risco
8.
Sci Total Environ ; 538: 600-10, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26318813

RESUMO

High atmospheric deposition of nitrogen (N) impacts functions and structures of N limited ecosystems. Due to filtering and related canopy drip effects forests are particularly exposed to N deposition. Up to now, this was proved by many studies using technical deposition samplers but there are only some few studies analysing the canopy drip effect on the accumulation of N in moss and related small scale atmospheric deposition patterns. Therefore, we investigated N deposition and related accumulation of N in forests and in (neighbouring) open fields by use of moss sampled across seven European countries. Sampling and chemical analyses were conducted according to the experimental protocol of the European Moss Survey. The ratios between the measured N content in moss sampled inside and outside of forests were computed and used to calculate estimates for non-sampled sites. Potentially influencing environmental factors were integrated in order to detect their relationships to the N content in moss. The overall average N content measured in moss was 20.0mgg(-1) inside and 11.9mgg(-1) outside of forests with highest N values in Germany inside of forests. Explaining more than 70% of the variance, the multivariate analyses confirmed that the sampling site category (site with/without canopy drip) showed the strongest correlation with the N content in moss. Spatial variances due to enhanced dry deposition in vegetation stands should be considered in future monitoring and modelling of atmospheric N deposition.


Assuntos
Poluentes Atmosféricos/análise , Briófitas/química , Monitoramento Ambiental/métodos , Nitrogênio/análise , Atmosfera/química , Ecossistema , Europa (Continente) , Florestas , Árvores
9.
New Phytol ; 147(3): 579-590, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33862943

RESUMO

The photobiont ultrastructure of the epiphytic lichens Bryoria fuscescens and Bryoria fremontii was studied along the pollution gradient from two Cu-Ni smelters in Nikel and Monchegorsk in northern Finland and north-western Russia. The relationship between ultrastructural characteristics of B. fuscescens and environmental factors (i.e. climate, atmospheric SO2 and bark element concentrations) was studied by using a principal component analysis (PCA) aiming to assess the air quality in a northern environment. Based on PCA, increased plasmolysis and mitochondrial changes in the Trebouxia photobiont were significantly correlated with elevated pollutant concentrations. Degenerated cells, showing altered chloroplasts and electron-translucent pyrenoglobuli, occurred in lichens growing 35-50 km from the Monchegorsk smelter. Cell wall and cytoplasmic lipid volumes, and size of pyrenoglobuli, positively correlated with the distance from the Monchegorsk smelter. Vacuoles and electron-opaque vacuolar deposits were significantly increased at the Finnish site in the vicinity of a pulp mill. Swelling of mitochondrial cristae and thylakoids showed little correlation with environmental factors, but indicated of initial stage of injuries and were observed at several slightly polluted sites in northern Finland and north-western Russia. The results suggest that the severe photobiont injuries of lichens are strongly associated with poor air quality.

10.
Environ Pollut ; 194: 50-59, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25094057

RESUMO

To assess the relationship between nitrogen concentrations in mosses and wet bulk nitrogen deposition or concentrations in precipitation, moss tissue and deposition were sampled within a distance of 1 km of each other in seven European countries. Relationships for various forms of nitrogen appeared to be asymptotic, with data for different countries being positioned at different locations along the asymptotic relationship and saturation occurring at a wet bulk nitrogen deposition of ca. 20 kg N ha(-1) yr(-1). The asymptotic behaviour was more pronounced for ammonium-N than nitrate-N, with high ammonium deposition at German sites being most influential in providing evidence of the asymptotic behaviour. Within countries, relationships were only significant for Finland and Switzerland and were more or less linear. The results confirm previous relationships described for modelled total deposition. Nitrogen concentration in mosses can be applied to identify areas at risk of high nitrogen deposition at European scale.


Assuntos
Poluentes Atmosféricos/análise , Briófitas/química , Monitoramento Ambiental/métodos , Nitrogênio/análise , Atmosfera/química , Europa (Continente) , Nitratos/análise , Chuva
12.
Int J Biometeorol ; 52(4): 251-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17957389

RESUMO

Timing of plant phenophases is a useful biological indicator which shows how nature responds to the variation in climate. Thus, long phenological observation series help to estimate the impact of changing climate on forest plants. We investigated whether phenological patterns of downy birch Betula pubescens respond to warming climate and whether the intensity of the responses varies among phytogeographical zones. We studied data collected by the Finnish National Phenological Network from 30 observation sites across Finland during 1997-2006. The advancement in the timing of the earliest phenophase, bud burst, ranged from 0.7 days/year in southern boreal zone to 1.4 days/year in middle and northern boreal zones. Timing of bud burst was most clearly dependent on mean May temperatures. The intensity of the response to temperature increased from south to north. The advancement of bud burst resulted into a significant lengthening of the growth period by 1.2-1.6 days per year in northern and middle boreal zones, respectively, whereas the lengthening was not significant in the southern boreal zone. No trend was observed in the timing of autumn phenophases.


Assuntos
Betula/crescimento & desenvolvimento , Clima , Finlândia , Efeito Estufa , Conceitos Meteorológicos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA