Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 66(3): 477-491, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29120073

RESUMO

Astrocytes play an important role in glutamatergic neurotransmission, namely by clearing synaptic glutamate and converting it into glutamine that is transferred back to neurons. The rate of this glutamate-glutamine cycle (VNT ) has been proposed to couple to that of glucose utilization and of neuronal tricarboxylic acid (TCA) cycle. In this study, we tested the hypothesis that glutamatergic neurotransmission is also coupled to the TCA cycle rate in astrocytes. For that we investigated energy metabolism by means of magnetic resonance spectroscopy (MRS) in the primary visual cortex of tree shrews (Tupaia belangeri) under light isoflurane anesthesia at rest and during continuous visual stimulation. After identifying the activated cortical volume by blood oxygenation level-dependent functional magnetic resonance imaging, 1 H MRS was performed to measure stimulation-induced variations in metabolite concentrations. Relative to baseline, stimulation of cortical activity for 20 min caused a reduction of glucose concentration by -0.34 ± 0.09 µmol/g (p < 0.001), as well as a -9% ± 1% decrease of the ratio of phosphocreatine-to-creatine (p < 0.05). Then 13 C MRS during [1,6-13 C]glucose infusion was employed to measure fluxes of energy metabolism. Stimulation of glutamatergic activity, as indicated by a 20% increase of VNT , resulted in increased TCA cycle rates in neurons by 12% ( VTCAn, p < 0.001) and in astrocytes by 24% ( VTCAg, p = 0.007). We further observed linear relationships between VNT and both VTCAn and VTCAg. Altogether, these results suggest that in the tree shrew primary visual cortex glutamatergic neurotransmission is linked to overall glucose oxidation and to mitochondrial metabolism in both neurons and astrocytes.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Neurônios/metabolismo , Córtex Visual/metabolismo , Animais , Mapeamento Encefálico , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Ciclo do Ácido Cítrico/fisiologia , Feminino , Glucose/metabolismo , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/metabolismo , Oxirredução , Oxigênio/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Distribuição Aleatória , Tupaiidae , Córtex Visual/diagnóstico por imagem , Percepção Visual/fisiologia
2.
J Neurophysiol ; 115(4): 2000-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26843607

RESUMO

We comprehensively characterize spiking and visual evoked potential (VEP) activity in tree shrew V1 and V2 using Cartesian, hyperbolic, and polar gratings. Neural selectivity to structure of Cartesian gratings was higher than other grating classes in both visual areas. From V1 to V2, structure selectivity of spiking activity increased, whereas corresponding VEP values tended to decrease, suggesting that single-neuron coding of Cartesian grating attributes improved while the cortical columnar organization of these neurons became less precise from V1 to V2. We observed that neurons in V2 generally exhibited similar selectivity for polar and Cartesian gratings, suggesting that structure of polar-like stimuli might be encoded as early as in V2. This hypothesis is supported by the preference shift from V1 to V2 toward polar gratings of higher spatial frequency, consistent with the notion that V2 neurons encode visual scene borders and contours. Neural sensitivity to modulations of polarity of hyperbolic gratings was highest among all grating classes and closely related to the visual receptive field (RF) organization of ON- and OFF-dominated subregions. We show that spatial RF reconstructions depend strongly on grating class, suggesting that intracortical contributions to RF structure are strongest for Cartesian and polar gratings. Hyperbolic gratings tend to recruit least cortical elaboration such that the RF maps are similar to those generated by sparse noise, which most closely approximate feedforward inputs. Our findings complement previous literature in primates, rodents, and carnivores and highlight novel aspects of shape representation and coding occurring in mammalian early visual cortex.


Assuntos
Sensibilidades de Contraste , Potenciais Evocados Visuais , Córtex Visual/fisiologia , Animais , Neurônios/fisiologia , Tupaia , Córtex Visual/citologia , Campos Visuais
3.
J Physiol Paris ; 110(1-2): 19-28, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27913167

RESUMO

The basal forebrain (BF) is an important regulator of cortical excitability and responsivity to sensory stimuli, and plays a major role in wake-sleep regulation. While the impact of BF on cortical EEG or LFP signals has been extensively documented, surprisingly little is known about LFP activity within BF. Based on bilateral recordings from rats in their home cage, we describe endogenous LFP oscillations in the BF during quiet wakefulness, rapid eye movement (REM) and slow wave sleep (SWS) states. Using coherence and Granger causality methods, we characterize directional influences between BF and visual cortex (VC) during each of these states. We observed pronounced BF gamma activity particularly during wakefulness, as well as to a lesser extent during SWS and REM. During wakefulness, this BF gamma activity exerted a directional influence on VC that was associated with cortical excitation. During SWS but not REM, there was also a robust directional gamma band influence of BF on VC. In all three states, directional influence in the gamma band was only present in BF to VC direction and tended to be regulated specifically within each brain hemisphere. Locality of gamma band LFPs to the BF was confirmed by demonstration of phase locking of local spiking activity to the gamma cycle. We report novel aspects of endogenous BF LFP oscillations and their relationship to cortical LFP signals during sleep and wakefulness. We link our findings to known aspects of GABAergic BF networks that likely underlie gamma band LFP activations, and show that the Granger causality analyses can faithfully recapitulate many known attributes of these networks.


Assuntos
Prosencéfalo Basal/fisiologia , Sono/fisiologia , Córtex Visual/fisiologia , Vigília/fisiologia , Animais , Eletroencefalografia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA