Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JIMD Rep ; 45: 51-55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30311141

RESUMO

Glycogen storage disease type IV (GSD-IV), or Andersen disease, is a rare autosomal recessive disorder that results from the deficiency of glycogen branching enzyme (GBE). This in turn results in accumulation of abnormal glycogen molecules that have longer outer chains and fewer branch points. GSD-IV manifests in a wide spectrum, with variable phenotypes depending on the degree and type of tissues in which this abnormal glycogen accumulates. Typically, GSD-IV presents with rapidly progressive liver cirrhosis and death in early childhood. However, there is a severe congenital neuromuscular variant of GSD-IV that has been reported in the literature, with fewer than 20 patient cases thus far. We report an unusual case of GSD-IV neuromuscular variant in a late preterm female infant who was born to non-consanguineous healthy parents with previously healthy children. Prenatally, our patient was found to have decreased fetal movement and polyhydramnios warranting an early delivery. Postnatally, she had severe hypotonia and respiratory failure, with no hepatic or cardiac involvement. Extensive metabolic and neurological workup revealed no abnormalities. However, molecular analysis by whole-exome sequencing revealed two pathogenic variants in the GBE1 gene. Our patient was thus a compound heterozygote of the two pathogenic variants: one of these was inherited from the mother [p.L490WfsX5 (c.1468delC)], and the other pathogenic variant was a de novo change [p.E449X (c.1245G>T)]. As expected in GSD-IV, diffuse intracytoplasmic periodic acid-Schiff-positive, diastase-resistant inclusions were found in the cardiac myocytes, hepatocytes, and skeletal muscle fibers of our patient.

2.
JCI Insight ; 2(16)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28814660

RESUMO

BACKGROUND: Cross-reactive immunological material-negative (CRIM-negative) infantile Pompe disease (IPD) patients develop an immune response against enzyme replacement therapy (ERT) with alglucosidase alfa that nullifies ERT efficacy. Prophylactic immune tolerance induction (ITI) with rituximab, methotrexate, and IVIG successfully prevents development of deleterious rhGAA IgG antibodies; however, safety, likelihood of success, and long-term efficacy of ITI in a larger cohort remain unknown. METHODS: Clinical data were analyzed for 19 CRIM-negative IPD patients who received ITI with rituximab, methotrexate, and IVIG in the ERT-naive setting (ERT+ITI) and compared to a historical cohort of 10 CRIM-negative IPD patients on ERT monotherapy. RESULTS: ITI was safely tolerated, although infections were reported in 4 patients. Fourteen (74%) ERT+ITI patients were alive, with a median age of 44.2 months at their final assessment. The eldest survivor was 103.9 months old, with 100.2 months of follow-up after initiation of ERT+ITI. Death (n = 5) occurred at a median age of 29.2 months and was unrelated to the administration of ITI. Fifteen patients either did not seroconvert (n = 8) or maintained low titers (n = 7; defined as titers of ≤6,400 throughout the course of ERT) following ERT+ITI. Only one patient developed high and sustained antibody titers (defined as titers of ≥51,200 at or beyond 6 months on ERT). Left ventricular mass index (LVMI) decreased from a median of 248.5 g/m2 at baseline to 76.8 g/m2 at a median time from ERT+ITI initiation to 59 weeks. ERT+ITI significantly improved overall survival (P = 0.001), eliminated/reduced antibodies at values of ≤6,400 at week 52 on ERT (P = 0.0004), and improved LVMI at week 52 on ERT (P = 0.02) when compared with ERT monotherapy. CONCLUSION: Evidence from this international cohort of CRIM-negative IPD patients further supports the safety, feasibility, and efficacy of ITI in the prevention of immune responses to ERT. TRIAL REGISTRATION: Clinicaltrials.gov NCT01665326. FUNDING: This research was supported in part by the Lysosomal Disease Network, a part of NIH Rare Diseases Clinical Research Network, and by a grant from Genzyme, a Sanofi company.

3.
Eur J Hum Genet ; 22(1): 105-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23695283

RESUMO

Recent studies have shown that certain copy number variations (CNV) are associated with a wide range of neurodevelopmental disorders, including autism spectrum disorders (ASD), bipolar disorder and intellectual disabilities. Implicated regions and genes have comprised a variety of post synaptic complex proteins and neurotransmitter receptors, including gamma-amino butyric acid A (GABAA). Clusters of GABAA receptor subunit genes are found on chromosomes 4p12, 5q34, 6q15 and 15q11-13. Maternally inherited 15q11-13 duplications among individuals with neurodevelopmental disorders are well described, but few case reports exist for the other regions. We describe a family with a 2.42 Mb duplication at chromosome 4p13 to 4p12, identified in the index case and other family members by oligonucleotide array comparative genomic hybridization, that contains 13 genes including a cluster of four GABAA receptor subunit genes. Fluorescent in-situ hybridization was used to confirm the duplication. The duplication segregates with a variety of neurodevelopmental disorders in this family, including ASD (index case), developmental delay, dyspraxia and ADHD (brother), global developmental delays (brother), learning disabilities (mother) and bipolar disorder (maternal grandmother). In addition, we identified and describe another individual unrelated to this family, with a similar duplication, who was diagnosed with ASD, ADHD and borderline intellectual disability. The 4p13 to 4p12 duplication appears to confer a susceptibility to a variety of neurodevelopmental disorders in these two families. We hypothesize that the duplication acts through a dosage effect of GABAA receptor subunit genes, adding evidence for alterations in the GABAergic system in the etiology of neurodevelopmental disorders.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA/genética , Deficiências do Desenvolvimento/genética , Receptores de GABA-A/genética , Adulto , Criança , Transtornos Globais do Desenvolvimento Infantil/etiologia , Transtornos Globais do Desenvolvimento Infantil/patologia , Pré-Escolar , Cromossomos Humanos Par 4/genética , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/patologia , Feminino , Duplicação Gênica , Humanos , Hibridização in Situ Fluorescente , Masculino , Linhagem , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA