Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7996): 691-696, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38267678

RESUMO

Predicting practical rates of transport in condensed phases enables the rational design of materials, devices and processes. This is especially critical to developing low-carbon energy technologies such as rechargeable batteries1-3. For ionic conduction, the collective mechanisms4,5, variation of conductivity with timescales6-8 and confinement9,10, and ambiguity in the phononic origin of translation11,12, call for a direct probe of the fundamental steps of ionic diffusion: ion hops. However, such hops are rare-event large-amplitude translations, and are challenging to excite and detect. Here we use single-cycle terahertz pumps to impulsively trigger ionic hopping in battery solid electrolytes. This is visualized by an induced transient birefringence, enabling direct probing of anisotropy in ionic hopping on the picosecond timescale. The relaxation of the transient signal measures the decay of orientational memory, and the production of entropy in diffusion. We extend experimental results using in silico transient birefringence to identify vibrational attempt frequencies for ion hopping. Using nonlinear optical methods, we probe ion transport at its fastest limit, distinguish correlated conduction mechanisms from a true random walk at the atomic scale, and demonstrate the connection between activated transport and the thermodynamics of information.

3.
Nano Lett ; 24(20): 6031-6037, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717626

RESUMO

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.

4.
Nat Mater ; 21(9): 1066-1073, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35902748

RESUMO

Solid-state ionic conduction is a key enabler of electrochemical energy storage and conversion. The mechanistic connections between material processing, defect chemistry, transport dynamics and practical performance are of considerable importance but remain incomplete. Here, inspired by studies of fluids and biophysical systems, we re-examine anomalous diffusion in the iconic two-dimensional fast-ion conductors, the ß- and ß″-aluminas. Using large-scale simulations, we reproduce the frequency dependence of alternating-current ionic conductivity data. We show how the distribution of charge-compensating defects, modulated by processing, drives static and dynamic disorder and leads to persistent subdiffusive ion transport at macroscopic timescales. We deconvolute the effects of repulsions between mobile ions, the attraction between the mobile ions and charge-compensating defects, and geometric crowding on ionic conductivity. Finally, our characterization of memory effects in transport connects atomistic defect chemistry to macroscopic performance with minimal assumptions and enables mechanism-driven 'atoms-to-device' optimization of fast-ion conductors.


Assuntos
Eletrólitos , Difusão , Condutividade Elétrica , Eletrólitos/química , Transporte de Íons , Íons/química
5.
J Phys Chem Lett ; 8(22): 5579-5586, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29083905

RESUMO

Photoelectrochemical water splitting is a promising pathway for the direct conversion of renewable solar energy to easy to store and use chemical energy. The performance of a photoelectrochemical device is determined in large part by the heterogeneous interface between the photoanode and the electrolyte, which we here characterize directly under operating conditions using interface-specific probes. Utilizing X-ray photoelectron spectroscopy as a noncontact probe of local electrical potentials, we demonstrate direct measurements of the band alignment at the semiconductor/electrolyte interface of an operating hematite/KOH photoelectrochemical cell as a function of solar illumination, applied potential, and doping. We provide evidence for the absence of in-gap states in this system, which is contrary to previous measurements using indirect methods, and give a comprehensive description of shifts in the band positions and limiting processes during the photoelectrochemical reaction.

6.
Adv Mater ; 26(6): 919-24, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24375546

RESUMO

The decay and transport of triplet excitons photogenerated via singlet exciton fission in polycrystalline and single-crystalline pentacene is reported. Using transient absorption spectroscopy, we find evidence for diffusion-mediated triplet-triplet annihilation. We estimate monomolecular lifetimes, bimolecular annihilation rate constants, and triplet exciton diffusion lengths. We discuss these results in the context of current solar cell device architectures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA